Presentation is loading. Please wait.

Presentation is loading. Please wait.

By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Hasan Mohammed Ali.

Similar presentations


Presentation on theme: "By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Hasan Mohammed Ali."— Presentation transcript:

1 By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Msc_hussien@yahoo.com Hasan Mohammed Ali Saeed University of Kufa\ College of Mathematics and Computer Sciences \Department of Mathematics Has_moh2005@yahoo.com

2 Historical Introduction

3 1966 BCK-algebra(Bose, chaudhury, K. Iseki) BCI-algebra (K. Iseki) Ideal of BCK-algebra (K. Iseki) 1983 BCH-algebra (Q.P.Hu, X.Li) 1991 Ideal of BCI-algebra (C. S. Hoo) Ideal of a BCH-algebra (M. A. Chaudhry)

4 1996 Closed ideal of BCH-algebra (M. A. Chaudhry) and (H. Fakhar-ud-din) 2010 Fantastic ideal (A. B. Saeid ) 2011 closed ideal with respect to an element of a BCH- algebra (H. H. Abbass, H.M.A. Saeed) Closed BCH-algebra with respect to an element (H. H. Abbass, H.M.A. Saeed)

5 أن أغلب الأجهزة الرقمية في أنظمة الاتصالات تقوم بنقل المعلومات على شكل ذبذبات مرمزة بشكل ثنائي أي ان المعلومة (message)تكون بصيغة 1,0لذلك سوف يكون موضوع الندوة حول الشفرات الثنائية وهذه الشفرات يمكن الحصول عليها من عناصر حقل غالوا وعلى سبيل المثال الذبذبة في المخطط ادناه يرمز لها بالرمز 10110

6 ينشأ حقل غالوا بأخذ متعددة حدود غير قابلة للتحليل ( بدائية ) primitive ذات درجة n تنتمي الى حلقة متعددة الحدود فيتم انشاء حقل غالوا باستخدامها حيث أن اي ان تكون جذراً لـــ أن يحتوي على من العناصر وهو حقل توسيع للحقل ويعتبر هذا الحقل مولد لـ من الذبذبات ( الشفرات الرقمية ) مــثال : أنشئ حقل غالوا باستخدام متعددة الحدود وبماأن اذن يمكن ايجاد عناصر غالوا من خلال التعويض عن

7 بـ 0,1 فيكون هناك من الأحتمالات التي تمثل عناصر حـــقل غالوا من وجهة نظر الرياضيات والذي يمثل مولد لشفرات رقمية ثنائية لمصممي الأجهزة الألكترونية أي أن هو مولد رسائل رقمية ثنائية

8 0011 0101 1000 0001 0111 1111 11101101 1010 1011 01101100 10010010 0100 الشكل الأتي يبين مولد شفرات رقمية shift regester الذي يمثل الحقل المولد بواسطة متعددة الحدود

9 خلال نقل المعلومات تكون معرضة للتشويش أي بمعنى اخر وجود اشارات دخيلة التي ممكن أن تغير المعلومات المنقولة.لذلك ظهرت الحاجة الى مايسمى الشفرات الكاشفة والمصححة للأخطاء. التشويش بعد حين التشويش 0010101010

10 صورة مستلمة من احدى الاقمار الصناعية قبل تصحيحها

11 وعلى سبيل المثال تقول وكالة ناسا للفضاء الأمريكية أنها أرسلت 1969 مركبتان فضائيتان (Mariners 6,7) وأن هاتان المركبتان أرسلتا أكثر من 200 صورة لكوكب المريخ كل صورة تحتاج الى ( (5 ملايين بت وأن معدل الأرسال هو 16200 بت في الثانية ترسل الى الأرض وأنها قد استخدمت الشفرات الكاشفة والمصححة للأخطاء

12 الصورة التي تم عرضها سابقا(قبل التصحيح) ( بعد التصحيح ) نعرض الصورة المشوشة التي تم عرضها سابقاً وتظهر الصورة الحقيقية على اليسار

13 www.NASA.gov

14 1.PRELIMINARIES Definition ( 1.1 ) [5, 6] : A BCI-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and o is a constant, satisfying the following axioms: for all x,y, z  X: ((x *y) * (x * z)) * (z * y) = 0, (x * (x * y)) * y = 0, x * x = 0, x * y =0 and y * x = 0 imply x = y,

15 Definition ( 1.2 ) [11] : A BCK-algebra is a BCI-algebra satisfying the axiom: 0 * x = 0 for all x  X. Definition ( 1.3 ) [10] : A BCH-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: for all x,y, z  X: x * x = 0, x * y =0 and y * x = 0 imply x = y, ( x * y ) * z = ( x * z ) * y

16

17 Definition ( 1.4 ) [3, 11, 12] : In any BCH/BCI/BCK-algebra X, a partial order  is defined by putting x  y if and only if x*y = 0. Proposition ( 1.5 ) [4, 8, 9] : In a BCH-algebra X, the following holds for all x, y, z  X, x * 0 = x, (x * (x * y)) * y = 0, 0 * (x * y) = (0 * x) * (0 * y), 0 * (0 * (0 * x)) = 0 * x, x  y implies 0 * x = 0 * y.

18 Definition ( 1.7 ) [2] : A BCH-algebra X that satisfying in condition if 0 * x = 0 then x = 0, for all x  X is called a P- semisimple BCH-algebra. Definition ( 1.8 ) [7] : A BCH-algebra X is called medial if x * ( x * y ) = y, for all x, y  X. Definition ( 1.9 ) [2] : A BCH-algebra X is called an associative BCH- algebra if: ( x * y ) * z = x * ( y * z ), for all x, y, z  X.

19 TYPE OF BCH-ALGEBRA BCH-ALGEBRA P- semisimple Medialassociative

20 Definition ( 1.10 ) [9] : Let X be a BCH-algebra. Then the set X + = { x  X : 0 * x = 0 } is called the BCA-part of X. Definition ( 1.12 ) [9] : Let X be a BCH-algebra. Then the set med(X) = {x  X : 0 * (0 * x) = x} is called the medial part of X.

21 PART OF BCH-ALGEBRA BCH-algebraBCA-partMedial part

22 Theorem ( 1.14 ) [7] : Let X be a BCH-algebra. Then x  med(X) if and only if x*y = 0*(y*x) for all x,y  X. Definition ( 1.15 ) [9] : Let S be a subset of a BCH-algebra X. S is called a subalgebra of X if x*y  S for every x,y  S.

23 Definition ( 1.16 ) [2, 7]: Let I be a nonempty subset of a BCH-algebra X. Then I is called an ideal of X if it satisfies: (i) 0  I (ii) x*y  I and y  I imply x  I. Definition ( 1.17) [7] : An ideal I of a BCH-algebra X is called a closed ideal of X if 0*x  I for all x  I.

24 Definition ( 1.18 ) [7] : An ideal I of a BCH-algebra X is called a quasi- associative ideal if 0*(0*x)=0*x, for each x  I. Definition ( 1.19 ) [1 ] : Let I be an ideal of X. Then I is called a fantastic ideal of X if (x*y)*z  I and z  I, then x*(y*(y*x))  I, for all x, y, z  X.

25 Definition ( 1.19 ) [1 ] : Let I be an ideal of X. Then I is called a fantastic ideal of X if (x*y)*z  I and z  I, then x*(y*(y*x))  I, for all x, y, z  X. Proposition ( 1.20 ) [1] : If X is an associative BCI-algebra, then every ideal is a fantastic ideal of X.

26

27 2.THE MAIN RESULTS Definition ( 2.1 ): Let X be a BCH-algebra and I be an ideal of X. Then I is called a closed ideal with respect to an element a  X (denoted a-closed ideal) if a * ( 0 * x )  I, for all x  I. Remark ( 2.2 ): In a BCH-algebra X, the ideal I = {0} is the closed ideal with respect to 0. Also, the ideal I = X is the closed ideal with respect to all elements of X.

28 Example ( 2.3 ): Let X = {0,a,b,c }. The following table shows the BCH-algebra on X. cba0* cba00 bc0aa a0cbb 0abcc

29 Then I={0,a} is closed ideal with respect to( 0 and a),Since 0  I, If x*y  I,and y  I implies x  I So I is ideal. 0*(0*0) = 0  I and 0*(0*a) = a  I  I is 0-closed ideal. Also a*(0*0)=a  I and a*(0*a) = 0  I  I is a-closed ideal.

30 Definition ( 2.4 ): Let X be a BCH-algebra and a  X. Then X is called closed BCH-algebra with respect to a, or a-closed BCH-algebra, if and only if every proper ideal is closed ideal with respect to a. Example ( 2.5 ): Let X={0, 1, 2, 3, 4, 5}. The following table shows the BCH-algebra structure on X.

31 543210* 4400000 4410011 4520222 4403333 0044444 0254555

32 I 1 ={0, 1}, I 2 ={0, 1, 2} and I 3 ={0, 1, 2, 3} are all the proper ideals [since if x*y  I i and y  I i  x  I i,  i=1, 2, 3 ]. I 1 is closed ideal with respect to 1 [since 1*(0*x)  I 1,  x  I 1 ] I 2 is closed ideal with respect to 1 [since 1*(0*x)  I 2,  x  I 2 ] I 3 is closed ideal with respect to 1 [since 1*(0*x)  I 3,  x  I 3 ] Therefore, X is 1-closed BCH-algebra. But X is not 2-closed BCH-algebra, since I1 is not 2-closed ideal[Since(2*(0*1))=2  I1

33 Theorem(2.6) : Let X is a BCH-algebra. If X=X + (where X+ is a BCA- part), then X is 0-closed BCH-algebra. Corollary(2.7) : Every BCK-algebra is 0-closed BCH-algebra.

34 BCK-algebra BCH and BCA-algebra 0-closed BCH-algebra

35 Theorem(2.8) : Let X be a 0-closed BCH-algebra. Then every quasi-associative ideal is closed ideal. Theorem(2.9) : Let X be a 0-closed BCH-algebra. Then every quasi- associative ideal is subalgebra.

36 In 0-closed BCH-algebra Quasi-associative ideal subalgebraClosed ideal

37 proposition(2.10) : Let X be an a-closed BCI-algebra, with a  X. If X is an associative BCI-algebra, then every a-closed ideal is a fantastic ideal of X.

38 شكراً لإصغائكم


Download ppt "By Assist.prof. Hussein Hadi Abbass University of Kufa\College of Education for girls\ Department of Mathematics Hasan Mohammed Ali."

Similar presentations


Ads by Google