Presentation is loading. Please wait.

Presentation is loading. Please wait.

Near Threshold Resonances and their Role in Hadron Physics B. K. Jain, MU-DAE Centre for Excellence in Basic Sciences University of Mumbai, Mumbai a+x.

Similar presentations


Presentation on theme: "Near Threshold Resonances and their Role in Hadron Physics B. K. Jain, MU-DAE Centre for Excellence in Basic Sciences University of Mumbai, Mumbai a+x."— Presentation transcript:

1 Near Threshold Resonances and their Role in Hadron Physics B. K. Jain, MU-DAE Centre for Excellence in Basic Sciences University of Mumbai, Mumbai a+x system E m a +m x [K.E.=0], Resonance threshold low kinetic energy the dynamics gets greatly enhanced, acquiring far reaching consequence.

2 (classic example) production of life essential element 12 C in Helium Burning in stars Hoyle state 0 +,7.65, excites state in 12 C, close to 8 Be+  threshold Fusion of 3  ’s is highly suppressed at stellar temp. but for some coincidences in nature.  -56.6 8 Be (8x10 -17 sec) -56.5 8 Be+  -84.8 -84.5 12 C 0 +, 7.65 2 +,4.41  Hoyle state

3 N*(1535) S 11 ½ -, 1/2 ½ +, 1/2 N(938 )  (1115) ½+½+  (1405) ½ -, -1 Strangeness udu/d uds ~ 600 MeV NN ~ 1490 MeV  K - p ~ 1432 MeV  Interactions of special interest :  N, near  N threshold K - p, below K - p threshold Both interactions mediated by the “Doorway” states & are attractive. N*(1535) for  N  (1405) for K - p Question: Do these interactions produce  -Nucleus and K - -Nucleus bound states ?

4 Search for (quasi) bound  /K - -nucleus states, Experimental, and Theoretical  -Nucleus  N threshold   N S 11  N threshold N 410 MeV 0 Experimental Strategy 1. Pfeiffer et al. Phys. Rev. Lett., 2004 Search for η-mesic nuclei in a recoil-free transfer reaction, BARC & COSY Collaboration : Phys. Rev. C 79, 012201(R), 2009. 2. p+ 27 Al 3 He+p+  - + 24 Mg  + 3 He p+   +x

5 Photoproduction of  -Mesic 3 He, TAPS Collab., Mainz Facility, MAMI  + 3 He 3 He +  3 He +p  0 x  p p S 11   E  = threshold – 820 MeV Sees  - 3 He mesic state near threshold E  =(-4.4+-4.2) MeV,  =(25.6+-6.1)MeV

6  N threshold   N S 11  N threshold N 410 MeV 0 3 He  q~0, recoiless A-2 p d 3 He detection with 4-momentum transfer,   –q 2 ~ m    3 He detected in coin- cidence with p and   

7 Hadron Workshop, Aligarh, 2008 7 (-13 +/- 5) MeV

8  t(E)=(h/2  dE d   3 He-mesic state: Theoretical Search

9 N G Kelkar, K.Khemchandani and B.K.Jain, J. Phys. G: Nucl. Part. Phys. 32 (2006) L19-L26. NGK, PRL 99 (2007) Review article, Reports on Progress in Physics, 2013, in press; NGK, KK, NJUpadhyay, BKJ

10 K - p, T=0 s-wave state i.e K - p system in T=0 state has a s-wave quasi-bound state  (1405), T=0, Spin ½, Strangeness -1, B.E. =27 MeV,  = 50 MeV K - p Threshold 28 MeV  (1405)    ~ 50 MeV 103  (1405) K-K- p pp K-K- migration of K - between 2 protons, a la Heitler-London Hydrogen Molecules. ?

11 11 Do strongly bound, compact “K - pp” modules form in Nuclei?  e-e- e+e+ K+K+ K-K-  p target recoil  Factory DA  NE, Frascati Experimentally, Answer seems YES FINUDA Measurements: 1.p  Invariant mass distribution, 2.p  Angular correlation. K - -

12

13 13 Mass Shifted  M  p  100 MeV K  + pp   p M(“K  pp ”) - M(K  pp )   M  p M(K  pp ) is free mass. Red arrow in the figure. 13

14 14 Opening angle distribution between a  and a proton: solid line, 6 Li, 7 Li, and 12 C; dashed line, 27 Al and 51 V. The shaded area ( cos  Lab < -0.8) is selected as the back-to-back event. Experimental Observation:   FINUDA Collaboration PRL 94, 212303(2005) PANIC08 @ Eilat, Israel 08.11.13 K  + A   p + X A can be 6 Li, 7 Li, 12 C, 27 Al and 51 V Back to Back Emission 14

15

16 Experimental binding energies, widths E [MeV]Г [MeV] Kpp FINUDA / INFN 110(10) 67(15) Kpp DISTO / GSI 103(8) 118(18) Kppn ? ?

17 Strongly bound states of K - -protons Theoretical: Inputs 1.p-p interaction, very well known 2.K - p interaction 1.Phenomenological, obtained by reproducing B.E. (28 MeV) of  (1405). Yamazaki-Akaishi, Dote  PT potential 3.K matrix : Λ(1405) ~ 1410 MeV Dalitz, A.Martin, B Martin, Sakitt Search for (quasi) bound K - -nucleus states, Theoretical

18

19 The potentials for K - p and K - n systems V k - p = -360 exp(-  r)/r MeV, T=0,1 V k - n = -30 exp(-  r)/r MeV, = 1  fm. Variational MC Cal. BKJ, N Upadhyay, Shoeb Mohmd. Jr. of Physics: CR, 374 (2012) 1 rms ~3.8 fm K - -Np Theoretical K - --pp, np

20 „Kpp” state calculations E BINDING ~ 35 - 105 MeV Г ~ 40- 90 MeV Calculations : Yamazaki-Akaishi, Dote –Weise, Hyodo-Weise, Schevchenko et al., Ikeda-Sato, Green- S.W.

21 Alternatively: Rearrangement of  and p energy, momentum due to its Knock Out collision with a proton in the recoiling nucleus.’ T p ~ 170 MeV p N S Wall and P R Roos, Phys. Rev. 150 (1966)811  Final State Interaction

22 Hadron Workshop, Mumbai, 2011 A Calculation of FSI Effect Pandejee, Upadhyay and Jain Phys. Rev. C 82 (2010)034608 A K-K-  p X =

23 Hadron Workshop, Mumbai, 2011 23

24 K-pK-p  Threshold K - p Pole T=0 Expt. ‘  (1405)’ 1433 (MeV) Resonance, T=0 12 28 MeV Twist  (1405) Strong Interplay between K - p &  channels Consequence : V K - p (T=0, 12) << V K - p (T=0, 28) : though not unique K - pp B.E. goes down ~ 100 40 MeV What about the exptl. obs.on K - pp p  reaction !! Double Pole

25 et al

26

27

28 Hadron Workshop, Mumbai, 2011 Characteristics of the A(K -,p  )X Reaction Kpp  p 1.Surface localized. 2.p and  go back to back. 3.Kpp interaction region localized in a very small volume. Relative p  momenta, a measure of this extention, ~ 1GeV/c, Hence the interaction vertex H(Kpp) does not change much over the range of measured p  invariant mass. p  q Q abs (q) dw abs (p,  = g abs (q) G (Q)

29 Hadron Workshop, Mumbai, 2011 = P - i  (E p -E p’ )

30 Hadron Workshop, Mumbai, 2011

31

32 CONCLUSIONS 1. pp ( K - pp)  p K+K+ 2.

33 Hadron Workshop, Mumbai, 2011 3. Study the K - 3 He  p n  pp n) process to explore the (K - pp) modules. No knock-out FSI

34 34 Mass Shifted  M  p  100 MeV K  + pp   p M(“K  pp ”) - M(K  pp )   M  p M(K  pp ) is free mass. Red arrow in the figure. 34

35 Hadron Workshop, Aligarh, 2008 35

36 Adelaide-2012 36   n p 0       -1    -  0 -2 S Meson Octet g.s. Baryon Octet  PT describes interaction between these two octets at low energies very well. +1 K 0 K +          -1  K -  K 0 S 2. Interaction between Mesons and Baryons

37 The potentials for K - p and K - n systems V kp = -360 exp(-  r)/r MeV, T=0,1 V kn = -30 exp(-  r)/r MeV, =1  fm. Variational Cal. K - pp system bound by around 150 MeV, rms =1.15 fm, =0.698 fm K - np system bound by around 65 MeV, rms =2.30 fm, =1.40 fm pp & pn potential : Mafliet-Tjon & Urbana Shoeb Mohmd. BKJ rms ~3.8 fm  PT, Single Pole

38

39


Download ppt "Near Threshold Resonances and their Role in Hadron Physics B. K. Jain, MU-DAE Centre for Excellence in Basic Sciences University of Mumbai, Mumbai a+x."

Similar presentations


Ads by Google