Presentation is loading. Please wait.

Presentation is loading. Please wait.

Vladimir M. Gubchenko Institute of Applied Physics, Russian Academy of Science февраль 09, 2012 ОФН-2012, ФЕВРАЛЬ 6-10, 2012, ИКИ РАН, Москва К кинетическому.

Similar presentations


Presentation on theme: "Vladimir M. Gubchenko Institute of Applied Physics, Russian Academy of Science февраль 09, 2012 ОФН-2012, ФЕВРАЛЬ 6-10, 2012, ИКИ РАН, Москва К кинетическому."— Presentation transcript:

1 Vladimir M. Gubchenko Institute of Applied Physics, Russian Academy of Science февраль 09, 2012 ОФН-2012, ФЕВРАЛЬ 6-10, 2012, ИКИ РАН, Москва К кинетическому описанию структуры «диффузной» области в нулевой точке, сформированной потоком плазмы

2 Chapman-Ferraro/Dangy problem (CF/DP) on inductive interaction of the plasma flow with the source of magnetization - induced 3D Magnetosphere and “X points”. DR in kinetics. B 0 =0 B0B0

3 1. Separated solar streamer and CME, Streamer belt. Sources of type III and type I radiobursts. V’<< v i kT<<mc 2

4 2. 3D Magnetosphere under SW flow with VDF f(v). Does f(v) shape affect space weather? Sources of ULF e.m. noise. v i <<V’<< v e kT<<mc 2

5 3. Relativistic jets. Sources of MW and X/gamma ray e.m. emissions. V’ = ckT>>mc 2

6 4. Radar and Sonar “cloak” systems. Acoustic “metamaterials”? How to make a “cloak” for shock wave by e.m. action ?

7 5. HED (High Energy Density Plasma) = ФВПЭ – физика высокой плотности энергии

8 6. PIC magnetosphere by Buneman, Nishikava, Cai, Lembege. B 0 =0. Subrelativistic plasma. 3D e.m. PIC code “Tristan”. (3D PIC in LANL, LNL, SNL, NNSA etc !) v’ = 0.5c in the +x direction, representing the solar wind without an IMF. The electron and ion thermal velocities are v e = (T e /m e ) 1/2 = 0.2c and v i = (T i /m i ) 1/2 =0,05c m i /m e = 16 v i <<v e <<V’ kT<<mc 2

9 What we have now in the LSK: postulated 1D (2D!) current sheets models and get the “X line”. 3D “X pont” topology? Diamagnetic “spontaneus” sheets (thick sheets). Harris like sheets. Resistive “induced by SW flow” sheets (thin sheets). Kropotkin, Zeleny, Malova, Artemyev, sheet with B n. 2D configurations as tearing and “stratification” modes in the 1D sheets (LS e.m. Weibel like instability) are related with shape as anisotropy of VDF. L S =?

10 “People have been constructing substorm models for nearly forty years; thus it seems highly unlikely to be possible to introduce anything radically new at the field at this time…” –Siscoe et al. “Search for an onset mechanism that operates for both CMEs and substorm.” 2009 3D LSK?? “The future thrust of magnetospheric research should thus be to understand the microphysics and its coupling to meso- and macro-scales. This will also form an important to space weather studies”- Paschman et al Directions Magnetospheric research: A report on ISSI forum, 2009. 3D LSK?? To the 3D LSK …… and to the 3D “X points”

11 Linear LSK parameters: Mach number M=v’/c s – shock pressure. E.m. number G V – eddy T currents. Mach number M governs L fields topology –shape of the Mach cone. What is a number G v which governs TEM fields topology --- “tailization” and “dipolization”?. “Resistive” state G V >1 SW is as diamagnetic. G V a function of the SW VDF f(v) shape in collisionless plasma in kinetics?

12 “Diffusion” 3D region (DR) with resistive and diamagnetic eddy currents forming self consistent electro and magnetic field structure. Diffusion region –DR is a source of accelerated (energetic) particles (AP). AP are forming resistive current (in red). There are diamagnetic particles which form diamagnetic current (in blue).

13 Electrotechnical model of plasma for the “hot” regime. The “quality” G. Meso/macroscales in the 3D LSK. Plasma anisotropy parameters. Loss and reactivity angles and G v as number N of loops in coil

14 MHD to Vlasov/Maxwell? Hot regime. Is in a “high beta X point ” - special LSK plasma ? “Diamagnetic” (front) and “resistive” (tail) boundary of the DR and TWO nonlinear parameters. Theory MHD (1 fluid, 2 fluid...) MHD+LS Kinetics (MAA+LZ) Selfconsistent LS Kinetics (Vlasov+Maxwell, Darwin..) Boundary of the DR

15 The metallic approach:“Quasiparticle” & “media” for C-F/D problem. Free particles in hot collisionless plasma with VDF f(v). “Trapped” and “flyby” particles in presence of the moving dipole with velocity v’. The “Internal magnetosphere” is a “Quasi particle” as moving magnetization in the “media” having Magnetic Dipole and Magnetic Toroid moments. The “Outer Magnetosphere” is inductive mode Cherenkov excitation in media.

16 Electric current in the «quasiparticle» and current in directly flowing «media». “Trapped particles =quasiparticle” form magnetic dipole and toroidal magnetization with postulated parameters and spatial distribution. “Flyby particles=media” are perturbed in their motion and are the subject of the selfconsitent Vlasov/Maxwell consideration.

17 On a Quasiparticle:Toroid orthogonal to Dipole, both are moving and are with gaussian spatial distribution. Parameter of toroidosity.

18 E.m. fields as combination of the dirivatives of the characteristic function M G. To B-normal!

19 Условие равенства нулю нормальной компоненты- координата «X точки». Сколько их?

20 3D mapping of the magnetic field lines near “X points“ (…. 2D Андронов …3D???.. Cai….)

21 Характеристическая функция M G и её представления непосредственно по “плоским волнам” представление через “цилиндрические гармоники –дальний хвост представление через сферические гармоники – ближний хвост представления через разложения в степенной ряд около Х точек.

22 Vlasov equation solution as dielectric (conductivity) tensor. Isotropic tensor. The egn. modes in media with isotropic VDF F(v). Denominator D T.

23 “Thin” (anomalous skin ) and “thick” (magnetic Debye) scales for LSK modeling “induced” by the SW flow. Meso/Macroscales from kinetics. “Energy” anisotropy Anomalous skin scale Diamagnetic Debye scale “Momentum” anisotropy The LSK limit appeared when: The DR is special high beta plasma

24 Quality G V depends only from the VDF shape and not (!) depends from plasma concentration. Ratio G w,k of diamagnetic to resistive current components in the media. Ratio G w,k = G kv’,k = G V of diamagnetic to resistive current components for direct motion: Cherenkov process ω=kv’.

25 2D characteristic function M G “at hot regimes” - magnetic Reynolds Re m =r 0 /r G and quality G V =r G /r DM are parameters! G V !! Re m =r 0 /r G

26 Shape: maxwellian VDF F(V) flow in DR.

27 Shape “kappa” VDF flow in DR: G V /G VM ratio as function of the parameter “kappa” of for power law VDF. Is G v a new space weather parameter together with Mach M !? “Halo” and “Core” kappa distributions of the SW VDF G V /G VM

28 Выводы Дано общее описание 3D магнитосфероподобных структур в кинетическом приближении Власова с учетом вида функции распределения потока для широкого класса плазм. Структура магнитного поля определяется двумя линейными масштабами пространственной дисперсии кинетической природы и линейными безразмерными параметрами число Маха и электромагнитная добротность. Введены два безразмерных нелинейных параметра для определения границ линейного описания поля в диффузионной области около Х точек. Получено уравнение и график для определения положения Х точек по данным об источнике и кинетических характеристик потока. Даны условия для определения структуры силовых линий около Х точек.

29 Diffusion region: 3D tail from MD part of magnetization. G V <<1. LS=LS=

30 Diffusion region: 3D tail from the MT part magnetization. G V <<1. Thin current sheets are inside of the thick current structure.

31 Values in the digits for the streamer: Scales of the AR Curr., Moments Velocity Scales ….

32 Values in the digits for Mag. PRC: Scales of the Mag Curr., Moments Velocity Scales ….


Download ppt "Vladimir M. Gubchenko Institute of Applied Physics, Russian Academy of Science февраль 09, 2012 ОФН-2012, ФЕВРАЛЬ 6-10, 2012, ИКИ РАН, Москва К кинетическому."

Similar presentations


Ads by Google