Presentation is loading. Please wait.

Presentation is loading. Please wait.

Program Analysis and Verification Spring 2015 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University.

Similar presentations


Presentation on theme: "Program Analysis and Verification Spring 2015 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University."— Presentation transcript:

1 Program Analysis and Verification Spring 2015 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University

2 Tentative syllabus Semantics Natural Semantics Structural semantics Axiomatic Verification Static Analysis Automating Hoare Logic Control Flow Graphs Equation Systems Collecting Semantics Abstract Interpretation fundamentals LatticesFixed-Points Chaotic Iteration Galois Connections Domain constructors Widening/ Narrowing Analysis Techniques Numerical Domains Alias analysis Interprocedural Analysis Shape Analysis CEGAR Crafting your own Soot From proofs to abstractions Systematically developing transformers 2

3 Previously Hoare logic – Inference system – Annotated programs – Soundness and completeness Weakest precondition calculus Strongest postcondition calculus 3

4 Weakest (liberal) precondition rules 1.wlp( skip, Q) = Q 2.wlp( x := a, Q) = Q[a/ x ] 3.wlp(S 1 ; S 2, Q) = wlp(S 1, wlp(S 2, Q)) 4.wlp( if b then S 1 else S 2, Q) = (b  wlp(S 1, Q))  (  b  wlp(S 2, Q)) 5.wlp( while b do {  } S, Q) =  where {b   } S {  } and  b    Q 4 Use consequence rule here

5 Strongest postcondition rules 1.sp( skip, P) = P 2.sp( x := a, P) =  v. x=a[v/x]  P[v/x] 3.sp(S 1 ; S 2, P) = sp(S 2, sp(S 1, P)) 4.sp( if b then S 1 else S 2, P) = sp(S 1, b  P)  sp(S 2,  b  P) 5.sp( while b do {  } S, P) =    b where {b   } S {  } and P   b   5 Use consequence rule here

6 Warm-up 6

7 Proof of swap by WP 7 { y=b  x=a } t := x { y=b  t=a } x := y { x=b  t=a } y := t { x=b  y=a }

8 Prove swap via SP 8 { y=b  x=a } t := x { } x := y {} y := t { x=b  y=a }

9 Prove swap via SP 9 { y=b  x=a } t := x {  v. t=x  y=b  x=a } x := y {  v. x=y  t=v  y=b  v=a } { x=y  y=b   v. t=v  v=a } { x=y  y=b  t=a } y := t {  v. y=t  x=v  v=b  t=a } { y=t  t=a   v. x=v  v=b } { y=t  t=a  x=b } { x=b  y=a } Quantifier elimination (a very trivial one) Quantifier elimination

10 Proof of absolute value via WP 10 { x=v } { (-x=|v|  x<0)  (x=|v|  x  0) } if x<0 then { -x=|v| } x := -x { x=|v| } else { x=|v| } skip { x=|v| } { x=|v| }

11 Prove absolute value by SP 11 { x=v } {} if x<0 then {} x := -x {} else { } skip {} { } { x=|v| }

12 Proof of absolute value via WP 12 { x=v } if x<0 then { x=v  x<0 } x := -x {  w. x=-w  w=v  w<0 } { x=-v  v<0 } else { x=v  x  0 } skip { x=v  x  0 } { x=-v  v<0  x=v  x  0 } { x=|v| }

13 Agenda Some useful rules Extension for memory Proving termination 13

14 Making the proof system more practical 14

15 Conjunction rule 15 Allows breaking up proofs into smaller, easier to manage, sub-proofs

16 More useful rules 16 { P } C { Q } { P’ } C { Q’ } { P  P’ } C {Q  Q’ } [disj p ] { P } C { Q } {  v. P } C {  v. Q } [exist p ] v  FV( C) { P } C { Q } {  v. P } C {  v. Q } [univ p ] v  FV(C ) { F } C { F } Mod(C)  FV(F)={} [Inv p ] Mod(C) = set of variables assigned to in sub-statements of C FV(F) = free variables of F Breaks if C is non- deterministic

17 Invariance + Conjunction = Constancy 17 Mod(C) = set of variables assigned to in sub-statements of C FV(F) = free variables of F { P } C { Q } { F  P } C { F  Q } [constancy p ] Mod(C)  FV(F)={}

18 Strongest postcondition calculus practice 18 By Vadim Plessky (http://svgicons.sourceforge.net/) [see page for license], via Wikimedia Commons

19 Floyd’s strongest postcondition rule Example { z=x } x:=x+1 { ?} 19 { P } x := a {  v. x=a[v/x]  P[v/x] } where v is a fresh variable [ass Floyd ] The value of x in the pre-state

20 Floyd’s strongest postcondition rule Example { z=x } x:=x+1 {  v. x=v+1  z=v } This rule is often considered problematic because it introduces a quantifier – needs to be eliminated further on We will now see a variant of this rule 20 { P } x := a {  v. x=a[v/x]  P[v/x] } where v is a fresh variable [ass Floyd ] meaning: {x=z+1}

21 “Small” assignment axiom Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [exist p ] {  n. x=n} x:=y+1 {  n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancy p ] {z=9} x:=y+1 {z=9  x=y+1} 21 { x=v } x:=a { x=a[v/x] } where v  FV(a) [ass floyd ] First evaluate a in the precondition state (as a may access x) Then assign the resulting value to x Create an explicit Skolem variable in precondition

22 “Small” assignment axiom Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [exist p ] {  n. x=n} x:=y+1 {  n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancy p ] {z=9} x:=y+1 {z=9  x=y+1} 22 { x=v } x:=a { x=a[v/x] } where v  FV(a) [ass floyd ]

23 “Small” assignment axiom Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [exist p ] {  n. x=n} x:=y+1 {  n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancy p ] {z=9} x:=y+1 {z=9  x=y+1} 23 { x=v } x:=a { x=a[v/x] } where v  FV(a) [ass floyd ]

24 “Small” assignment axiom Examples: {x=n} x:=5*y {x=5*y} {x=n} x:=x+1 {x=n+1} {x=n} x:=y+1 {x=y+1} [exist p ] {  n. x=n} x:=y+1 {  n. x=y+1} therefore {true} x:=y+1 {x=y+1} [constancy p ] {z=9} x:=y+1 {z=9  x=y+1} 24 { x=v } x:=a { x=a[v/x] } where v  FV(a) [ass floyd ]

25 Prove using strongest postcondition 25 { x=a  y=b } t := x x := y y := t { x=b  y=a }

26 Prove using strongest postcondition 26 { x=a  y=b } t := x { x=a  y=b  t=a } x := y y := t { x=b  y=a }

27 Prove using strongest postcondition 27 { x=a  y=b } t := x { x=a  y=b  t=a } x := y { x=b  y=b  t=a } y := t { x=b  y=a }

28 Prove using strongest postcondition 28 { x=a  y=b } t := x { x=a  y=b  t=a } x := y { x=b  y=b  t=a } y := t { x=b  y=a  t=a } { x=b  y=a } // cons

29 Prove using strongest postcondition 29 { x=v } if x 0 } else { x=v  x  0 } skip { x=v  x  0 } { v<0  x=-v  v  0  x=v } { x=|v| }

30 Prove using strongest postcondition 30 { x=v } if x 0 } else { x=v  x  0 } skip { x=v  x  0 } { v<0  x=-v  v  0  x=v } { x=|v| }

31 Sum program – specify Define Sum(0, n) = 0+1+…+n 31 {?} x := 0 res := 0 while (x<y) do res := res+x x := x+1 {?} { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Background axiom

32 Sum program – specify Define Sum(0, n) = 0+1+…+n 32 { y  0 } x := 0 res := 0 while (x<y) do res := res+x x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) } Background axiom

33 Sum program – prove Define Sum(0, n) = 0+1+…+n 33 { y  0 } x := 0 res := 0 Inv = while (x<y) do res := res+x x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

34 Sum program – prove Define Sum(0, n) = 0+1+…+n 34 { y  0 } x := 0 { y  0  x=0 } res := 0 Inv = while (x<y) do res := res+x x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

35 Sum program – prove Define Sum(0, n) = 0+1+…+n 35 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = while (x<y) do res := res+x x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

36 Sum program – prove Define Sum(0, n) = 0+1+…+n 36 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x)  x  y } while (x<y) do res := res+x x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

37 Sum program – prove Define Sum(0, n) = 0+1+…+n 37 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x)  x  y } while (x<y) do { y  0  res=m  x=n  n  y  m=Sum(0, n)  x<y } { y  0  res=m  x=n  m=Sum(0, n)  n<y } res := res+x x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

38 Sum program – prove Define Sum(0, n) = 0+1+…+n 38 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x)  x  y } while (x<y) do { y  0  res=m  x=n  n  y  m=Sum(0, n)  x<y } { y  0  res=m  x=n  m=Sum(0, n)  n<y } res := res+x { y  0  res=m+x  x=n  m=Sum(0, n)  n<y } x := x+1 { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

39 Sum program – prove Define Sum(0, n) = 0+1+…+n 39 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x)  x  y } while (x<y) do { y  0  res=m  x=n  n  y  m=Sum(0, n)  x<y } { y  0  res=m  x=n  m=Sum(0, n)  n<y } res := res+x { y  0  res=m+x  x=n  m=Sum(0, n)  n<y } x := x+1 { y  0  res=m+x  x=n+1  m=Sum(0, n)  n<y } { y  0  res=Sum(0, x)  x=n+1  n<y } // sum axiom { y  0  res=Sum(0, x)  x  y } // cons { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

40 Sum program – prove Define Sum(0, n) = 0+1+…+n 40 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x)  x  y } while (x<y) do { y  0  res=m  x=n  n  y  m=Sum(0, n)  x<y } { y  0  res=m  x=n  m=Sum(0, n)  n<y } x := x+1 { y  0  res=m  x=n+1  m=Sum(0, n)  n<y } res := res+x { y  0  res=m+x  x=n+1  m=Sum(0, n)  n<y } { y  0  res=Sum(0, x)  x=n+1  n<y } // sum axiom { y  0  res=Sum(0, x)  x  y } // cons { y  0  res=Sum(0, x)  x  y  x  y } { y  0  res=Sum(0, y)  x=y } { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

41 Buggy sum program 1 Define Sum(0, n) = 0+1+…+n 41 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x)  x  y } while (x<y) do { y  0  res=m  x=n  n  y  m=Sum(0, n)  x<y } { y  0  res=m  x=n  m=Sum(0, n)  n<y } res := res+x { y  0  res=m+x  x=n  m=Sum(0, n)  n<y } x := x+1 { y  0  res=m+n  x=n+1  m=Sum(0, n)  n<y } { y  0  res=Sum(0, n)+n  x=n+1  n<y }  { y  0  res=Sum(0, x)  x  y } // cons { y  0  res=Sum(0, x)  x  y  x  y } { y  0  res=Sum(0, y)  x=y } { res = Sum(0, y) } { x=Sum(0, n) } { y=n+1 } { x+y=Sum(0, n+1) }

42 Buggy sum program 2 42 { y  0 } x := 0 { y  0  x=0 } res := 0 { y  0  x=0  res=0 } Inv = { y  0  res=Sum(0, x) } = { y  0  res=m  x=n  m=Sum(0, n) } while (x  y) do { y  0  res=m  x=n  m=Sum(0, n)  x  y  n  y } x := x+1 { y  0  res=m  x=n+1  m=Sum(0, n)  n  y} res := res+x { y  0  res=m+x  x=n+1  m=Sum(0, n)  n  y} { y  0  res-x=Sum(0, x-1)  n  y} { y  0  res=Sum(0, x) } { y  0  res=Sum(0, x)  x>y }  {res = Sum(0, y) }

43 Handling data structures 43

44 Problems with Hoare logic and heaps { P[a/ x ] } x := a { P } Consider the annotated program { y=5 } y := 5; { y=5 } x := &y; { y=5 } *x := 7; { y=5 } Is it correct? 44 The rule works on a syntactic level unaware of possible aliasing between different terms (y and *x in our case)

45 Problems with Hoare logic and heaps { P[a/ x ] } x := a { P } {(x=&y  z=5)  (x  &y  y=5)} *x = z; { y=5 } What should the precondition be? 45

46 Problems with Hoare logic and heaps { P[a/ x ] } x := a { P } {(x=&y  z=5)  (x  &y  y=5)} *x = z; { y=5 } We split into cases depending on possible aliasing 46

47 Problems with Hoare logic and heaps { P[a/ x ] } x := a { P } {(x=&y  z=5)  (x  &y  y=5)} *x = z; { y=5 } What should the precondition be? Joseph M. Morris: A General Axiom of AssignmentA General Axiom of Assignment A different approach: heaps as arrays Really successful approach for heaps is based on Separation Logic Separation Logic 47

48 Axiomatizing data types 48 We added a new type of variables – array variables – Model array variable as a function y : Z  Z Re-define program states State = Define operational semantics  x := y [ a ],    y [ a ] := x,   S ::= x := a | x := y [ a ] | y [ a ] := x | skip | S 1 ; S 2 | if b then S 1 else S 2 | while b do S

49 Axiomatizing data types 49 We added a new type of variables – array variables – Model array variable as a function y : Z  Z We need the two following axioms: S ::= x := a | x := y [ a ] | y [ a ] := x | skip | S 1 ; S 2 | if b then S 1 else S 2 | while b do S { y[x  a](x) = a } { z  x  y[x  a](z) = y(z) }

50 Array update rules (wlp) Treat an array assignment y[a] := x as an update to the array function y – y := y[a  x] meaning y’=  v. v=a ? x : y(v) 50 S ::= x := a | x := y [ a ] | y [ a ] := x | skip | S 1 ; S 2 | if b then S 1 else S 2 | while b do S [array-update] { P[y[a  x]/y] } y[a] := x { P } [array-load] { P[y(a)/x] } x := y[a] { P } A very general approach – allows handling many data types

51 Array update rules (wlp) example Treat an array assignment y[a] := x as an update to the array function y – y := y[a  x] meaning y’=  v. v=a ? x : y(v) 51 [array-update] { P[y[a  x]/y] } y[a] := x { P } {x=y[i  7](i)} y[i]:=7 {x=y(i)} {x=7} y[i]:=7 {x=y(i)} [array-load] { P[y(a)/x] } x := y[a] { P } {y(a)=7} x:=y[a] {x=7}

52 Array update rules (sp) 52 [array-update F ] { x=v  y=g  a=b } y[a] := x { y=g[b  v] } [array-load F ] { y=g  a=b } x := y[a] { x=g(b) } In both rules v, g, and b are fresh

53 practice proving programs with arrays 53

54 Array-max program – specify 54 nums : array N : int // N stands for num’s length { N  0  nums=orig_nums } x := 0 res := nums[0] while x res then res := nums[x] x := x + 1 1.{ x=N } 2.{  m. (m  0  m<N)  nums(m)  res } 3.{  m. m  0  m<N  nums(m)=res } 4.{ nums=orig_nums }

55 Array-max program 55 nums : array N : int // N stands for num’s length { N  0  nums=orig_nums } x := 0 res := nums[0] while x res then res := nums[x] x := x + 1 Post 1 : { x=N } Post 2 : { nums=orig_nums } Post 3 : {  m. 0  m<N  nums(m)  res } Post 4 : {  m. 0  m<N  nums(m)=res }

56 Proof strategy Prove each goal 1, 2, 3, 4 separately and use conjunction rule to prove them all After proving – {N  0} C {x=N} – {nums=orig_nums} C {nums=orig_nums} We have proved – {N  0  nums=orig_nums} C {x=N  nums=orig_nums} We can refer to assertions from earlier proofs in writing new proofs 56

57 Array-max example: Post 1 57 nums : array N : int // N stands for num’s length { N  0 } x := 0 { N  0  x=0 } res := nums[0] { x=0 } Inv = { x  N } while x res then { x=k  k<N } res := nums[x] { x=k  k<N } { x=k  k<N } x := x + 1 { x=k+1  k<N } { x  N  x  N } { x=N }

58 Array-max example: Post 2 58 nums : array N : int // N stands for num’s length { nums=orig_nums } x := 0 { nums=orig_nums } res := nums[0] { nums=orig_nums } Inv = { nums=orig_nums } while x res then { nums=orig_nums } res := nums[x] { nums=orig_nums } { nums=orig_nums } x := x + 1 { nums=orig_nums } { nums=orig_nums  x  N } { nums=orig_nums }

59 Array-max example: Post 3 59 nums : array { N  0  0  m res then { nums(x)>oRes  res=oRes  x=k  0  m oRes  x=k  0  m<k  nums(m)  oRes } { x=k  0  m  k  nums(m)  res } { (x=k  0  m  k  nums(m)  res)  (oRes  nums(x)  res=oRes  x=k  res=oRes  0  m<k  nums(m)  oRes)} { x=k  0  m  k  nums(m)  res } x := x + 1 { x=k+1  0  m  k  nums(m)  res } { 0  m<x  nums(m)  res } { x=N  0  m<x  nums(m)  res} [univ p ] {  m. 0  m<N  nums(m)  res }

60 Proving termination 60 By Noble0 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

61 Total correctness semantics for While 61 [ P[a/ x ] ] x := a [ P ] [ass p ] [ P ] skip [ P ] [skip p ] [ P ] S 1 [ Q ],[ Q ] S 2 [ R ] [ P ] S 1 ; S 2 [ R ] [comp p ] [ b  P ] S 1 [ Q ], [  b  P ] S 2 [ Q ] [ P ] if b then S 1 else S 2 [ Q ] [if p ] [ P’ ] S [ Q’ ] [ P ] S [ Q ] [cons p ] if P  P’ and Q’  Q [while p ] [ P(z+1) ] S [ P(z) ] [  z. P(z) ] while b do S [ P(0) ] P(z+1)  b P(0)   b

62 Total correctness semantics for While 62 [ P[a/ x ] ] x := a [ P ] [ass p ] [ P ] skip [ P ] [skip p ] [ P ] S 1 [ Q ],[ Q ] S 2 [ R ] [ P ] S 1 ; S 2 [ R ] [comp p ] [ b  P ] S 1 [ Q ], [  b  P ] S 2 [ Q ] [ P ] if b then S 1 else S 2 [ Q ] [if p ] [ P’ ] S [ Q’ ] [ P ] S [ Q ] [cons p ] if P  P’ and Q’  Q [while p ] [ b  P  t=k ] S [ P  t<k ] [ P ] while b do S [  b  P ] P  t0P  t0 Rank, or Loop variant

63 Proving termination There is a more general rule based on well- founded relations – Partial orders with no infinite strictly decreasing chains Exercise: write a rule that proves only that a program S, started with precondition P terminates [] S [] 63

64 Proving termination There is a more general rule based on well- founded relations – Partial orders with no infinite strictly decreasing chains Exercise: write a rule that proves only that a program S, started with precondition P terminates [ P ] S [ true ] 64

65 Array-max – specify termination 65 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [?] while x res then res := nums[x] x := x + 1 [?]

66 Array-max – specify termination 66 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ N-x ] while x < N [ ? ] if nums[x] > res then res := nums[x] x := x + 1 [ ? ] [ true ]

67 Array-max – prove loop variant 67 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x<N  N-x=k  N-x  0 ] if nums[x] > res then res := nums[x] x := x + 1 // [ N-x<k  N-x  0 ] [ true ]

68 Array-max – prove loop variant 68 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x0  0 ] if nums[x] > res then res := nums[x] x := x + 1 // [ N-x<k  N-x  0 ] [ true ] Capture initial value of x, since it changes in the loop

69 Array-max – prove loop variant 69 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x0  0 ] if nums[x] > res then res := nums[x] [ x=x0  x0<N  N-x0=k  N-x0  0 ] // Frame x := x + 1 // [ N-x<k  N-x  0 ] [ true ]

70 Array-max – prove loop variant 70 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x0  0 ] if nums[x] > res then res := nums[x] [ x=x0  x0<N  N-x0=k  N-x0  0 ] // Frame x := x + 1 [ x=x0+1  x0<N  N-x0=k  N-x0  0 ] // [ N-x<k  N-x  0 ] [ true ]

71 Array-max – prove loop variant 71 nums : array N : int // N stands for num’s length x := 0 res := nums[0] Variant = [ t=N-x ] while x < N [ x=x0  x0<N  N-x0=k  N-x0  0 ] if nums[x] > res then res := nums[x] [ x=x0  x0<N  N-x0=k  N-x0  0 ] // Frame x := x + 1 [ x=x0+1  x0<N  N-x0=k  N-x0  0 ] [ N-x<k  N-x  0 ] // cons [ true ]

72 Zune calendar bugbug while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } } else { days -= 365; year += 1; } 72

73 Fixed code while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; } } else { days -= 365; year += 1; } 73

74 Fixed code – specify termination [ ? ] while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; } } else { days -= 365; year += 1; } [ ? ] 74

75 Fixed code – specify variant [ true ] Variant = [ ? ] while (days > 365) { if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; } } else { days -= 365; year += 1; } [?] } [ true ] 75

76 Fixed code – proving termination [ true ] Variant = [ t=days ] while (days > 365) { [ days>365  days=k  days  0 ] if (IsLeapYear(year)) { if (days > 366) { days -= 366; year += 1; } else { break; [ false ] } } else { days -= 365; year += 1; } // [ days  0  days<k ] } [ true ] 76 Let’s model break by a small cheat – assume execution never gets past it

77 Fixed code – proving termination [ true ] Variant = [ t=days ] while (days > 365) { [ days  0  k=days  days>365 ] -> [ days  0  k=days  days>365 ] if (IsLeapYear(year)) { [ k=days  days>365 ] if (days > 366) { [ k=days  days>365  days>366 ] -> [ k=days  days>366 ] days -= 366; [ days=k-366  days>0 ] year += 1; [ days=k-366  days>0 ] } else { [ k=days  days>365  days  366 ] break; [ false ] } [ (days=k-366  days>0)  false ] -> [ days 0 ] } else { [ k=days  days>365 ] days -= 365; [ k-365=days  days-365>365 ] -> [ k-365=days  days  0 ] -> [ days<k  days  0 ] year += 1; [ days<k  days  0 ] } [ days<k  days  0 ] } [ true ] 77

78 Challenge: proving non-termination Write a rule for proving that a program does not terminate when started with a precondition P Prove that the buggy Zune calendar program does not terminate 78 { b  P } S { b } { P } while b do S { false } [while-nt p ]

79 conclusion 79

80 Extensions to axiomatic semantics Assertions for execution time – Exact time – Order of magnitude time Assertions for dynamic memory – Separation Logic Separation Logic Assertions for parallelism – Owicki-Gries Owicki-Gries – Concurrent Separation Logic – Rely-guarantee 80

81 Axiomatic verification conclusion Very powerful technique for reasoning about programs – Sound and complete Extendible Static analysis can be used to automatically synthesize assertions and loop invariants 81

82 Next lecture: static analysis


Download ppt "Program Analysis and Verification Spring 2015 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University."

Similar presentations


Ads by Google