Presentation is loading. Please wait.

Presentation is loading. Please wait.

А.А.Солошенко JINR а также некоторые теоретические и феноменологические аспекты N=1 SUSY теорий (отчет за последние 5 лет)

Similar presentations


Presentation on theme: "А.А.Солошенко JINR а также некоторые теоретические и феноменологические аспекты N=1 SUSY теорий (отчет за последние 5 лет)"— Presentation transcript:

1 А.А.Солошенко JINR а также некоторые теоретические и феноменологические аспекты N=1 SUSY теорий (отчет за последние 5 лет)

2 Outline 2 Motivation Signature of signal events Relevant model parameters Background and event selection Data sets and software  Anomaly puzzle in N=1 SUSY field theories  Finite N=1 SUSY field theories

3 БозоныФермионы Поля материи LiLi EiEi QiQi UiUi DiDi Переносчики взаимодействий GaGa V k V ' Поля Хиггса H1H1 H2H2 3 Состав полей MSSM

4 4 БозоныФермионы Поля материи LiLi EiEi QiQi UiUi DiDi Переносчики взаимодействий GaGa V k V ' Поля Хиггса H1H1 H2H2 Состав частиц MSSM

5 5 Dominant production and decays channels light charged Higgs ( ) heavy charged Higgs ( ) 5

6 Discovery contours 6 Combined results. Systematic and statistical uncertainties are included. Using charge Higgs decays into SM particles it’s not possible to discover it in the intermediate tanβ region We have to consider either new production modes or new decay channels

7 NLO production cross section 7 Combined results. Systematic and statistical uncertainties are included. 7

8 Promising production modes in the MSSM (m H + <400 GeV, tg β ≈ 7) 8 1. σ ~ 1-10 fb (tg β independent) 2. σ ~ 1-10 fb 3. σ ~ 1 fb 4. σ ~ 1-10 fb (nearly tg β independent) 5. σ ~ 10 -3 -10 fb 6. σ may reach 1 pb but this mode is very complicated

9 Promising decay channels in the MSSM 9 1. 2. (?) 3. see next slide…

10 Charged Higgs boson decay into chargino-neutralino 3 leptons + missing Et example diagram 10 We take into account all kinematically accessible combinations of chargino-neutralino giving 3 charged leptons in the final state

11 Production modes for heavy charged Higgs 11

12 Parameters Higgs sector: slepton masses: chargino-neutralino sector: other parameters: choice is inspired by the scenario 12

13 Chosen benchmark points = 400 GeV, = 7, 15 = 150 GeV, = 250 GeV, (A) = 135 GeV, = 210 GeV; (B) = 200 GeV, = 310 GeV = 1000 GeV, = 2000 GeV, = 800 GeV from M.Flechl’s report 13 7 H ± events maximum

14 Branching ratios 14

15 Signal and background 15 signal: SM background: SUSY background:

16 MC electrons (14 TeV) 16

17 Final electrons (14 TeV) 17

18 Dilepton invariant mass distribution ( same flavor and opposite charge ) 18 background suppression, Z-veto “neutralino-edges” (Q.Xu, phd thesis, 2009, SPS1a parameter set)

19 19 Trilepton mass distribution (dies at ) p_T sum of non top jets (against background) (Hansen et al., 2005) angular correlations ? (for the signal and for SUSY background; chiral nature of Yukawa couplings etc.)

20 MC samples and software 20  14 TeV, 10 TeV signal data sets (Herwig)  7 TeV signal data sets (Herwig and Matchig)  10 TeV SUSY background data sets  7 TeV SUSY background data sets (requested)  Athena Framework: 15.5.0  AnalysisSkeleton  ChargedHiggsAnalysis framework (special package)

21 The 5-σ discovery contour (Hansen et al., 2005) 21

22 The supercurrent contains among its components the axial-vector current, the supersymmetry current and the energy-momentum tensor. Anomalies of the supercurrent components also form a supermultiplet. If supersymmetry is preserved under quantization, all the members of a supermultiplet should receive the same quantum corrections. On the one hand, energy-momentum tensor trace anomaly is proportional to the β-function, which receives quantum corrections at all loop levels. On the other hand, axial anomaly is exhausted at the one loop level due to the Adler-Bardeen theorem. This contradiction is called anomaly puzzle. 22

23 gravity mediation: universal gaugino mass at the GUT scale M 1 ≈0.5 M 2 at the EW scale anomaly mediation: inverted relation between the GUT-scale gaugino masses M 1 > M 2 at the EW scale 23

24 It’s possible to construct N=1 SUSY field theories finite to all orders of perturbation theory. Necessary and sufficient conditions for finiteness are defined already at the one-loop level. superpotential: Φ i is in irreducible representation R i of the gauge group G one-loop (two-loop) finiteness conditions: - gauge coupling constant T(R i ) is the Dynkin index of R i C 2 (G) is the quadratic Casimir of the adjoint representation of G C 2 (R i ) is the quadratic Casimir of the representation R i 24

25 are scalar parts of are the gauginos one-loop (two-loop) finiteness conditions: finiteness also requires that the following sum rule for the soft scalar masses has to be satisfied: 25

26  the number of generations is fixed by the requirement of finiteness  the number and the representations of the Higgs fields are fixed  all the Yukawa couplings are expressed in terms of the gauge one, number of free parameters is significantly reduced  in some models B/L violating terms are suppressed by the requirement of finiteness  finiteness provides us with a rigid selection of a possible GUT group (SU (5), SU(6), SO(10), E(6)), an abelian subgroup is not allowed 26


Download ppt "А.А.Солошенко JINR а также некоторые теоретические и феноменологические аспекты N=1 SUSY теорий (отчет за последние 5 лет)"

Similar presentations


Ads by Google