Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 What have we learned about three-nucleon systems at intermediate energies? Nasser Kalantar-Nayestanaki Kernfysisch Versneller Instituut (KVI), Univ.

Similar presentations


Presentation on theme: "1 What have we learned about three-nucleon systems at intermediate energies? Nasser Kalantar-Nayestanaki Kernfysisch Versneller Instituut (KVI), Univ."— Presentation transcript:

1 1 What have we learned about three-nucleon systems at intermediate energies? Nasser Kalantar-Nayestanaki Kernfysisch Versneller Instituut (KVI), Univ. Of Groningen 18th International Symposium on Spin Physics (SPIN 2008) Charlottesville, Virginia, October 6, 2008

2 Nasser Kalantar, SPIN20082 N-N Potentials Modern phenomenological NN potentials: Comparison with experimental np&pp database gives:  2 /data ~ 1 Comparison with experimental np&pp database gives:  2 /data ~ 1  Nijmegen I  Nijmegen II  Reid 93  CD-Bonn  Argonne V18  …  Nijmegen I  Nijmegen II  Reid 93  CD-Bonn  Argonne V18  …

3 Nasser Kalantar, SPIN20083 Ab-initio Calculations for Nuclei S. Pieper et al., Argonne (+3NF) (2NF)

4 Nasser Kalantar, SPIN20084 Beyond phenomenological N-N forces Phenomenological N-N forces fail to describe A>2 systems! How to resolve? Three-Nucleon Force! (3NF) Three-Nucleon Force! (3NF)

5 Nasser Kalantar, SPIN20085 Three-Body Forces in Nuclear Physics “...the replacement of field interactions by two- body action-at-a-distance potentials is a poor approximation in nuclear problems.”

6 Nasser Kalantar, SPIN20086 N N N  Three-Body Forces in Nuclear Physics

7 Nasser Kalantar, SPIN20087 Ggggggg      parametrization of Fuijta-Miyazawa force + 2  rescattering + higher-order interactions  Added to 2N potential as correction  Tucson-Melbourne, Urbana IX, IL2, Brazil,... Three-Body Forces in Nuclear Physics

8 Nasser Kalantar, SPIN20088 Effective-Field Theory Approach  Developed by Weinberg  Coupling of pions and nucleons in EFT  Predicts structure of 3NF  Self-consistent approach  Only works at energies below pion-mass scale

9 Nasser Kalantar, SPIN20089 A three-body force is a force that does not exist in a system of two objects but appears in a system of three objects (three-body system like in Euler's three-body problem) or more. In physics, an intuitive example of a three-body force is the case of charged, metallic spheres: the charge distribution at the surface of two spheres placed close to each other will be modified, and thus the total force felt by a third sphere cannot be described by the sum of the forces from the two other spheres taken individually. The fundamental strong interaction seems to exhibits such behaviours. In particle physics, the interactions between the three quarks that compose baryons can be described in a diquark model which is equivalent to the hypothesis of a three-body force. There is growing evidence in the field of nuclear physics that three-body forces exist among the nucleons inside atomic nuclei (three-nucleon force). Three-body forces and Wikipedia As an analogy, if we identify bodies with human beings and forces with emotions, jealousy is a good example of three-body force: it is not felt as long as only two persons are acting, but it can show up as soon as a third person enters into the scene. Retrieved from "http://en.wikipedia.org/wiki/Three-body_force"

10 Nasser Kalantar, SPIN200810 Total nd Cross sections High precision data from Los Alamos W.P. Abfalterer et al., PRL 81, 57 (1998) nd scattering np scattering Only 2NF  Effect of 3NF small  High-precision mandatory  In addition, look for sensitivity: exclusive channels other observables  Effect of 3NF small  High-precision mandatory  In addition, look for sensitivity: exclusive channels other observables

11 Nasser Kalantar, SPIN200811 The Smoking Guns  Elastic N+d scattering: at the minimum of the cross section and towards higher energies  Three-nucleon break-up: more degrees of freedom  Four-nucleon scattering: larger sensitivity to 3NFs  Elastic N+d scattering: at the minimum of the cross section and towards higher energies  Three-nucleon break-up: more degrees of freedom  Four-nucleon scattering: larger sensitivity to 3NFs  2NF+3NF –  2NF  2NF+3NF   p+d  p+p+n (190 MeV)

12 Nasser Kalantar, SPIN200812 The A y puzzle at low energies 18 MeV 5 MeV7 MeV9 MeV 10 MeV12 MeV16 MeV 22.7 MeV28 MeV 2NF 2+3NF Calculations by Pisa group

13 Nasser Kalantar, SPIN200813 The A y puzzle at low energies Calculations by Pisa group, data courtesy T. Clegg from TUNL

14 Nasser Kalantar, SPIN200814 AGOR Facility

15 Nasser Kalantar, SPIN200815 SALAD 1995-2002 Few-Nucleon Studies @ KVI pp  /pd  d+p breakup p+d  3 He+  (*) d+d scattering (2B,3B) BBS PB pd+dp elastic d+p  3 He+  (*) d+d scattering (2B) BINA 2004-???

16 Nasser Kalantar, SPIN200816 pd elastic scattering cross sections K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

17 Nasser Kalantar, SPIN200817 pd elastic scattering cross sections K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

18 Nasser Kalantar, SPIN200818 pd elastic scattering cross sections K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

19 Nasser Kalantar, SPIN200819 pd elastic scattering cross sections K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

20 Nasser Kalantar, SPIN200820 pd elastic scattering cross sections K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

21 Nasser Kalantar, SPIN200821 pd elastic scattering cross sections (theory –data)/data K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

22 Nasser Kalantar, SPIN200822 pd elastic scattering cross sections (theory –data)/data K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

23 Nasser Kalantar, SPIN200823 p+d vector analyzing powers Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

24 Nasser Kalantar, SPIN200824 p+d vector analyzing powers Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

25 Nasser Kalantar, SPIN200825 p+d vector analyzing powers Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

26 Nasser Kalantar, SPIN200826 p+d vector analyzing powers Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

27 Nasser Kalantar, SPIN200827 p+d vector analyzing powers Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

28 Nasser Kalantar, SPIN200828 p+d vector analyzing powers Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

29 Nasser Kalantar, SPIN200829 p+d vector analyzing powers theory-data Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

30 Nasser Kalantar, SPIN200830 p+d vector analyzing powers theory-data Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

31 Nasser Kalantar, SPIN200831 p+d vector analyzing powers theory-data Hanover Approach of dynamical delta Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC71, 064004 (2005)

32 Nasser Kalantar, SPIN200832 Effect of 3NF as a function of Energy Bieber et al., PRL84, 606 (2000) Ermisch et al., PRL86, 5862 (2001) PRC68, 054004(2003) PRC71, 064004(2005)

33 Nasser Kalantar, SPIN200833 Spin-Transfer Coefficients

34 Nasser Kalantar, SPIN200834 Spin-Transfer Coefficients H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

35 Nasser Kalantar, SPIN200835 Spin-Transfer Coefficients H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

36 Nasser Kalantar, SPIN200836 Spin-Transfer Coefficients H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

37 Nasser Kalantar, SPIN200837 Spin-Transfer Coefficients H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

38 Nasser Kalantar, SPIN200838 Spin-Transfer Coefficients H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

39 Nasser Kalantar, SPIN200839 Spin-Transfer Coefficients Hanover Approach of dynamical delta H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

40 Nasser Kalantar, SPIN200840 Spin-Transfer Coefficients H.R. Amir-Ahmadi et al., PRC 75, 041001(R) 2007

41 Nasser Kalantar, SPIN200841 More analyzing powers 65 MeV/A 90 MeV/A H. Mardanpour et al., Eur. Phys. J. A31, 383 (2007)

42 Nasser Kalantar, SPIN200842 5 dimensional phase space (  1,  2, E 1, E 2,  12 ) i.e. much larger than in the elastic channel (  ) 5 dimensional phase space (  1,  2, E 1, E 2,  12 ) i.e. much larger than in the elastic channel (  ) Allows detailed road-map for the study of nuclear forces Allows detailed road-map for the study of nuclear forces Requires a setup with large coverage Break-up channel

43 Nasser Kalantar, SPIN200843 Break-up channel at 65 MeV/A S (MeV) Analysis by Polish group Kistryn et al., Phys. Lett. B 641, 23 (2006)

44 Nasser Kalantar, SPIN200844 PRELIMINARY p+d  p+p+n @ 135 MeV/A Cross sections and analyzing powers in p+d breakup at 135 MeV with BINA Note: only a few of the many measured configurations are shown Thesis, M. Eslami-Kalantari CDBonn AyAy 

45 Nasser Kalantar, SPIN200845 p+d  p+p+n @ 135 MeV/A Significant discrepancies in  and A y (but not simultaneous) A y puzzle at small relative energies?!? The Nd scattering process at 135 MeV cannot be described consistently yet CDBonn CDBonn+TM’ CDBonn+  PRELIMINARY AyAy  Thesis, M. Eslami-Kalantari

46 Nasser Kalantar, SPIN200846 p+d  p+p+n @ 190 MeV/A Discrepancies confirmed and larger at 190 MeV Mardanpour et al., PhD thesis, in preparation for publication Small relative energy between the protons Preliminary

47 Nasser Kalantar, SPIN200847 p+d  pp( 1 S 0 )+n @ 190 MeV/A Mardanpour, PhD thesis, in preparation for publication  2 He+n p+d  2 He+n  d+p p+d  d+p CDBonn CDBonn+ 

48 Nasser Kalantar, SPIN200848 dd elastic scattering at 65 MeV/A Data: BINA: A. Ramazani et al. BBS: C. Baily et al. Calculation: Deltuva, Fonseca Note: calculation based on Born Approximation (not expected to make reliable predictions at this energies) A. Ramazani, Ph.D. thesis

49 Nasser Kalantar, SPIN200849 Summary Three-body hadronic reactions are the most promosing tool for the study of 3BF effects. A systematic study of cross sections and analyzing powers as a function of energy provides a good data-base for these studies. Aside from cross sections, many spin observables have also been studied at various energies. Elastic Scattering First experiments for the break-up very successful. Results available for observables from 50 to 190 Mev/A. Breakup

50 Nasser Kalantar, SPIN200850 Outlook The search for 3BF effects at intermediate energies is coming to an end. At KVI, our comprehensive program to study the three-body systems will come to an end in 2009. The situation for the three-body systems is like the situation of NN of some 20 years ago! PWA is desperately called for. The 4-body system is coming up. The theoretical progress in 4-body systems is very promising. The first ab-initio calculations are available below 3B breakup and demonstrate the high sensitivity to “physics” beyond what is known.

51 Nasser Kalantar, SPIN200851 Acknowledgements H.R. Amir Ahmadi, A.M. van den Berg, R. Bieber, K. Ermisch, M. Elsami-Kalantari, M.N. Harakeh, H. Huisman, M. Kis, H. Mardanpour, A. Mehmandoost, J.G. Messchendorp, M. Mahjour-Shafiei, A. Ramazani, E. Van Garderen, M. Volkerts, S.Y. van der Werf, H. Woertche + Polish Experimental Group (O. Biegun, K. Bodek, St. Kistryn, A. Kozela, A. Magiera, A. Micherdzinska, E. Stephan, R. Sworst, J. Zejma and W. Zipper) + Tokyo group (K. Itoh, T. Kawabata, H. Kuboki, Y. Maeda, S. Sakaguchi, H. Sakai, N. Sakalmoto, Y. Sasamoto, M. Sasano, K. Sekiguchi, K. Suda, Y. Takahashi, T. Uesaka, K. Yako + Bloomington group (C. Bailey, A. Bacher, A. Micherdzinska and E. Stephenson) + Theoretical support from Bochum-Cracow (Gloeckle, Golak, Kuros-Zolnierczuk, Skibinski and Witala) KIT (Kamada) Hanover (Sauer) Lisbon (Deltuva, Fonseca) Jülich (Epelbaum, Nogga)

52 Nasser Kalantar, SPIN200852 The new polarimeter and the 4  detector, BINA BINA @ KVI beam ~3 meters Big Instrument for Nuclear-polarization Analysis (BINA)

53 Nasser Kalantar, SPIN200853 The new polarimeter and the 4  detector, BINA 150 phoswich Scintillators =Target chamber Forward scintillators (E-wall) Thin scintillators for particle identification Wire chambers + analyzer

54 Nasser Kalantar, SPIN200854 The new Polarimeter and the 4  detector

55 Nasser Kalantar, SPIN200855 Effect of 3NF as a function of Mandelstam t

56 Nasser Kalantar, SPIN200856 Effect of 3NF as a function of Mandelstam t

57 Nasser Kalantar, SPIN200857 Effect of 3NF as a function of Mandelstam u

58 Nasser Kalantar, SPIN200858 Effect of 3NF as a function of Mandelstam u

59 Nasser Kalantar, SPIN200859 Overview world data-base for pd pd  rich set of spin observables for the elastic channel, allowing a multi-dim. study of 3NF  only fraction has been measured accurately and systematically (RIKEN/RCNP/IUCF/KVI)  still much to explore!  Need for a partial wave analysis  rich set of spin observables for the elastic channel, allowing a multi-dim. study of 3NF  only fraction has been measured accurately and systematically (RIKEN/RCNP/IUCF/KVI)  still much to explore!  Need for a partial wave analysis

60 Nasser Kalantar, SPIN200860 pd elastic scattering cross sections K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

61 Nasser Kalantar, SPIN200861 pd elastic scattering cross sections Hanover Approach of dynamical delta (theory –data)/data K. Ermisch et al., PRC 68, 054004 (2003), PRC 71, 064004 (2005)

62 Nasser Kalantar, SPIN200862 Nucleon-deuteron Radiative Capture Why study Nd radiative capture? 1)Initial (pd) and final state ( 3 He) show 3NF effects-> radiative capture should also! 2)High-momentum component of 3 He w.f. 3)Sensitive to electro-magnetic currents!

63 Nasser Kalantar, SPIN200863 “Tensor anomaly” in pd-radiative capture o IUCF, PRC35, 37(87)  RCNP (Preliminary) Bochum-Cracow  Faddeev calculation  Potentials: AV18 (NN) +UIX (3NF)  E.M. current operator: non-rel single nucleon + many-body currents in  and  exchange (explicit) p+d  3 He+  @ 100 MeV/nucleon A y (d)A y (N) A yy A xx

64 Nasser Kalantar, SPIN200864 o IUCF, PRC35, 37(87)  RCNP (Preliminary) A y (d)A y (N) A yy A xx Hanover  Coupled channel  Potentials: CD Bonn+ (NN) +virtual   E.M. current operator: Siegert form of the current operator + expl. MEC contrs. not accounted for by SGE “Tensor Anomaly” “Tensor anomaly” in pd-radiative capture p+d  3 He+  @ 100 MeV/nucleon

65 Nasser Kalantar, SPIN200865 KVI Experiment (2003) d+p  3 He+     e + /e - LH 2 -55 mg/cm 2 CH 2 -10 mg/cm 2

66 Nasser Kalantar, SPIN200866 Vector and tensor analyzing powers in d+p-> 3 He+  @ KVI Calc. Hanover group Data: A. Mehmandoost nucl-ex/0501012; PLB 617, 18 (2005)

67 Nasser Kalantar, SPIN200867 pd radiative capture anomaly KVI and (preliminary) RCNP data are inconsistent!

68 Nasser Kalantar, SPIN200868 Triton Binding Energy Model  2 /data 3 H B.E. [MeV] NIJM I1.037.72 NIJM II1.037.62 Reid931.037.63 Argonne V181.097.62

69 Nasser Kalantar, SPIN200869 Triton Binding Energy Model  2 /data 3 H B.E. [MeV] NIJM I1.037.72 NIJM II1.037.62 Reid931.037.63 Argonne V181.097.62 EXPERIMENT-8.48 Modern N-N potentials fail to describe triton B.E.

70 Nasser Kalantar, SPIN200870 Nd elastic scattering cross sections H. Witala et al. PRL 81, 1183 (1998) E n lab = 12 MeV E n lab = 65 MeV E n lab = 140 MeV E n lab = 200 MeV 3NF only 2NF only Total


Download ppt "1 What have we learned about three-nucleon systems at intermediate energies? Nasser Kalantar-Nayestanaki Kernfysisch Versneller Instituut (KVI), Univ."

Similar presentations


Ads by Google