Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neural Circuitry underlying generation of saccades and pursuit Lab # 1 - Catching a ball - What to expect/ think about.

Similar presentations


Presentation on theme: "Neural Circuitry underlying generation of saccades and pursuit Lab # 1 - Catching a ball - What to expect/ think about."— Presentation transcript:

1 Neural Circuitry underlying generation of saccades and pursuit Lab # 1 - Catching a ball - What to expect/ think about

2 What can be learnt from natural tasks?

3 1.Fixations exclusively on task-relevant objects (see Land chapter) 2.Eyes deal with one object at a time, corresponding to the duration of the manipulation.(Land: object-related actions) 3. Tight linkage between location of gaze and information needed at that moment. (Just-in-time strategy)

4 Cortical specialization

5 Brain Circuitry for Saccades Oculomotor nuclei V1: striate cortex Basal ganglia 1. Neural activity related to saccade 2. Microstimulation generates saccade 3. Lesions impair saccade

6 target selection signals to muscles inhibits SC saccade decision saccade command monitor/plan movements Function of Different Areas

7 Superior colliculus

8 Frontal eye fields Voluntary control of saccades. Selection from multiple targets Relates to behavioral goals.

9 -Saccades/Smooth Pursuit -Planning/ Error Checking -relates to behavioral goals Supplementary eye fields

10 LIP: Lateral Intra-parietal Area Target selection for saccades: cells fire before saccade to attended object Posterior Parietal Cortex reaching grasping Intra-Parietal Sulcus: area of multi-sensory convergence

11 Smooth pursuit & Supplementary Brain Circuitry for Pursuit

12 Smooth pursuit & Supplementary Brain Circuitry for Pursuit Velocity signal Early motion analysis

13 How do we use our eyes to catch balls? What information the the brain need? Neurophysiological experiments look at single movements in response to flashes of light.

14 Eye movements in cricket: Batsman anticipate bounce point Better batsman arrive earlier Land & MacLeod, 2001 pursuitsaccade

15 Photoreceptors ganglion cells LGN Primary visual cortex other cortical areas mid-brain brain stem muscles Why are eye movements predictive? Analysis of visual signals takes a lot of time! Round trip from eye to brain to muscles takes a minumum of 200 msec. Cricket ball only takes about 600 msec. Prediction gets around the problem of sensory delays.

16 Is prediction seen in cricket a general property of behavior, or only seen in skilled performance like cricket or baseball?

17

18 Catching: Gaze Patterns Catcher Thrower saccade X X smooth pursuit X

19

20 Unexpected bounce leads to poor performance, particularly in the pursuit movement after the bounce. Implications of this?

21

22 After three trials, pursuit has improved a lot. Implications of this?

23

24 Different pattern of eye movements when watching (earlier, no pursuit). Implications of this?

25 Catcher Thrower saccade X X Gaze Patterns Different when Watching X

26

27 Throwing saccade catcher thrower -440 ms -330 ms X X

28 Lab groups

29 1. What are the questions? Is the behavior observed by Land in cricket also true for a simple task like catching a ball? What eye movements are made in this case? Do subjects anticipate the bounce point? By how much? Does it correlate with performance? Do Subjects look at floor or above the bounce point? What happens after bounce? How do subjects adjust to different balls? ….. Is there a difference between throwing and catching? Why? What eye movements are made when observing others throw and catch? What head movements are made? Do they anticipate the action? Similarity between individuals? When do the hands start to move? 2. Choice of task: Catching and throwing a ball. 3. Procedure: Select subject and calibrate eye tracker. Three people stand at equal distances apart and throw the ball back and forth, with a bounce in the trajectory. Need to measure this distance. First throw in a predictable manner, about 8 times. Then use a different ball, 8 trials. Other balls… Compare one versus two eyes???

30 2.Data analysis Label your tape. Play it frame-by-frame on the VCR in the lab. …. What to look for: –Describe eye movements sequence for each trial eg Trial 1: fixate near hands/saccade to bounce point/fixate/track portion of trajectory/fixate for last part of trajectory (??) Trial 2: fixate near hands/saccade to bounce point/fixate/track portion of trajectory/fixate for last part of trajectory (??) …. B How regular is the sequence of movements? C What is the timing of the saccades/fixations/tracking relative to movement of the ball. How much do subjects anticipate the bounce point, if at all? D. How accurate are fixations near the bounce point? (Need to measure visual angle.) –Compare different conditions. –What happens with the different balls? Do the eye movements change with additional experience? How quickly do they adjust? Other Aspects: –Compare timing of eye and head movements? –When do hands start to move, relative to release of ball? –How similar are different individuals? Where would we expect similarities/ differences? What is the role of the pursuit movement? If pursuit is made only on final bounce, implies pursuit is used to guide hands. Maybe position of eye in head. Binocular information versus monocular (looming)

31


Download ppt "Neural Circuitry underlying generation of saccades and pursuit Lab # 1 - Catching a ball - What to expect/ think about."

Similar presentations


Ads by Google