Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to the Ariane launchers family Ing. Luca del Monte ESA-HQ, Paris Corso di Propulsione Aerospaziale Universitadi Roma La Sapienza A.A. 2004-05.

Similar presentations


Presentation on theme: "Introduction to the Ariane launchers family Ing. Luca del Monte ESA-HQ, Paris Corso di Propulsione Aerospaziale Universitadi Roma La Sapienza A.A. 2004-05."— Presentation transcript:

1 Introduction to the Ariane launchers family Ing. Luca del Monte ESA-HQ, Paris Corso di Propulsione Aerospaziale Universitadi Roma La Sapienza A.A

2 2 Corso di Propulsione Aerospaziale A.A A launcher is defined by: Its payload mass performance in a specified orbit The available volume to hoist the payload The environmental conditions supported by the payload:thermal, electromagnetic, mechanical

3 3 Corso di Propulsione Aerospaziale A.A The Payload Orbits are classified by: Their plane angle compared to the Equatorial plane. Their altitude.

4 4 Corso di Propulsione Aerospaziale A.A Orbit Altitudes

5 5 Corso di Propulsione Aerospaziale A.A Orbit Inclination

6 6 Corso di Propulsione Aerospaziale A.A Low Earth Orbit Altitude between 100Km and 500Km Polar or with dedicated inclination. Used for Science, Observation, Telecom, Navigation (Constellations).

7 7 Corso di Propulsione Aerospaziale A.A Sun Synchronous Orbits (S.S.O.) Polar Orbit Altitude such that the satellite fly over a given part of the earth at the same local hour. Mainly 800 Km

8 8 Corso di Propulsione Aerospaziale A.A Geo Stationary Transfer Orbit Equatorial Orbit Perigee: around 250 Km Apogee: Km Circularisation at Km made by the satellite itself, or the launcher, depending on its architecture and the specific impulse of its last stage. Performance optimisation for the satellite. Telecom, TV, Meteorology, etc.

9 9 Corso di Propulsione Aerospaziale A.A Ariane 5 : Performance growth potential is one of the keys to success t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 t Ariane 5G Ariane 5 ECA Ariane 5 ES Ariane 5 ECB GTO PERFORMANCE

10 10 Corso di Propulsione Aerospaziale A.A Advantages of an Equatorial Launching Base Trajectories to reach the final Orbit are simplified. The performance Gain is significant Kourou is an example.

11 11 Corso di Propulsione Aerospaziale A.A Launcher Design (1) From one to four stages, usually three Expendables and Recoverable Staging optimisation.

12 12 Corso di Propulsione Aerospaziale A.A Stage Propulsion Solid propulsion Liquid propulsion ( storable propellant, Cryogenic propellant)

13 13 Corso di Propulsione Aerospaziale A.A Launcher Design Disciplines Aerodynamics Structures Guidance and Control Propulsion

14 14 Corso di Propulsione Aerospaziale A.A From Ariane 1 to Ariane 5: 162 launches 11 Ariane 1 6 Ariane 2 11 Ariane Ariane 4 15 Ariane satellites + 39 auxiliary payloads successfully injected into orbit First flight: 24/12/79 First flight: 31/05/86 First flight: 04/08/84 First flight: 15/06/88 First flight: 04/06/96

15 15 Corso di Propulsione Aerospaziale A.A

16 16 Corso di Propulsione Aerospaziale A.A Ariane 1 Objectives Free Access to Space. European Programme with French Space Agency as Prime Contractor. Already qualified technologies. Comparable performance with American launchers.

17 17 Corso di Propulsione Aerospaziale A.A Ariane 1 Design Choices (1) Technology proven structures: metallic tanks already ground qualified. Classical aeronautical technologies for inter stages and fairing. Two main engines: Viking for the storable propellant stage, HM7 for the cryogenic stage, already ground tested.

18 18 Corso di Propulsione Aerospaziale A.A Ariane 1, L tons propellant UDMH-N2O4 19m high, 3.8m broad 2485kN Thrust 247.4s Specific Impulse ΔV=1800m/s

19 19 Corso di Propulsione Aerospaziale A.A Viking V Design coming from the French Diamant launcher. 621kN Thrust on ground Single shaft turbo pump Water cooled

20 20 Corso di Propulsione Aerospaziale A.A HM7 Predevelopment in the 60s in France 61.8kN Thrust 440.6s Specific impulse Turbo pump with gear box

21 21 Corso di Propulsione Aerospaziale A.A Ariane 1 Upper composite VEB with European electronic box (Ferranti inertial platform) Sylda in carbon fiber for double launches Standard adaptors

22 22 Corso di Propulsione Aerospaziale A.A Ariane 1 Fairing Classical Aeronautical structure. Parallel jettisoning Carbon Fibre sandwich for the rear part.

23 23 Corso di Propulsione Aerospaziale A.A Ariane 3 Objectives To launch 2 standard telecom satellites (average mass 1350kg) in GTO To reduce the recurring price

24 24 Corso di Propulsione Aerospaziale A.A Ariane 3 Design Choices To use strap on solid boosters To increase the reliability of Viking propulsion by using a propellant less sensitive to High Frequency phenomena To increase slightly the HM7 performance by increasing the chamber pressure.

25 25 Corso di Propulsione Aerospaziale A.A A3 Strap On Boosters 7.3 tons solid propellant Immerged and canted nozzle Subsonic jettisoning Mechanical ejection springs

26 26 Corso di Propulsione Aerospaziale A.A A3 H10 Propellant mass increase from 8 to 10 tons Hm7 engine chamber pressure increase from 30 to 35 bars Hm7 Thrust increase to 64.8 tons Weight savings

27 27 Corso di Propulsione Aerospaziale A.A A3 Fairing Double canted nose cone to allow a standard volume for two 1350kg satellites

28 28 Corso di Propulsione Aerospaziale A.A Ariane 4 Objectives To offer a payload volume of 3.6m in diameter. To launch 2 satellites of 1800kg To be commercially competitive, using double launches.

29 29 Corso di Propulsione Aerospaziale A.A Ariane 4 Design Choices Increase the solid booster performance. Design liquid propellant boosters using the Viking engine. Use the already qualified carbon fibre technology for upper part structures.

30 30 Corso di Propulsione Aerospaziale A.A A4 L220 Liquid propellant mass increase from 140 to 220 tons Adaptation of the thrust frame to fit with ELA2 launch pad Adaptation of the structures for booster fittings. Integration of a new water tank

31 31 Corso di Propulsione Aerospaziale A.A A4 Liquid Propellant Booster 2 or 4 boosters. Liquid propellant UDMH- N2O4 (39tons each) Fixed canted engine Viking Supersonic jettison Water need fed by L220

32 32 Corso di Propulsione Aerospaziale A.A A4 Solid Propellant Booster 2 or 4 boosters Propellant mass increased from 7.3 to 9.5 tons Length adaptation to fit with the L220 attachments Burning time decreased from 10.3 to 7.3 mm/s Subsonic jettison

33 33 Corso di Propulsione Aerospaziale A.A A4 H10 Replacement of the metallic rear skirt by a carbon fibre one Adaptation of the structures to the increased mechanical loads due to the new upper structure.

34 34 Corso di Propulsione Aerospaziale A.A A4 VEB Redesign of the structure due the fairing diameter increase from 3.2 to 4m Updating of the electronic equipment, particularly the computer and inertial platform

35 35 Corso di Propulsione Aerospaziale A.A A4 Fairing and Speltra Increased diameter to 4m. Two lengths configurations. Carbon fibre technology Parallel jettisoning with clean pyro-cutting

36 36 Corso di Propulsione Aerospaziale A.A Ariane 5 Objectives To launch the Hermes Vehicle To launch heavy commercial satellites To launch constellation satellites in batches To low down the launching services price

37 37 Corso di Propulsione Aerospaziale A.A Ariane 5 Design Choices Man rated for Hermes. Less numerous, but more powerful and reliable Engines Re ignitable upper stage Double launch 20% less expensive than Ariane 4

38 38 Corso di Propulsione Aerospaziale A.A A5 Solid Propellant Stage 230 solid propellant engine, casted in a dedicated plant in near the launch pad. Flexible joint movable nozzle. Stage recovery for expertise.

39 39 Corso di Propulsione Aerospaziale A.A A5 Cryotechnic stage 5.4 m diameter. 158 ton of propellant LOX/LH kN Thrust Sub orbital stage. The solid propellant stages thrust is transmitted to the upper composite via the EPC front skirt.

40 40 Corso di Propulsione Aerospaziale A.A A5 Vulcain Engine Thrust: 1145kN. Mixture ratio: Mass: 1740kg. Gas generator fed with independent flow Specific Impulse:431s.

41 41 Corso di Propulsione Aerospaziale A.A A5 Vehicle Equipment Bay Hoist the Storable propellant stage. Includes an active attitude control system using small Hydrazine engines (400N) Redundant electrical equipments. Digital Bus for the whole launcher.

42 42 Corso di Propulsione Aerospaziale A.A A5 storable propellant stage Pressure fed Aestus Engine Storable propellant Two tanks with a flow combiner for each propellant Re ignitable

43 43 Corso di Propulsione Aerospaziale A.A A5 Fairing Adaptable length for single or double launch Acoustic internal protection for Satellite comfort! Parallel jettison using gas proof pyro devices.

44 44 Corso di Propulsione Aerospaziale A.A A5 payload volume

45 45 Corso di Propulsione Aerospaziale A.A A5 Speltra Adaptable length Used for launching two heavy satellites Carbon fibre technology

46 46 Corso di Propulsione Aerospaziale A.A ARIANE 1 – 5 LAUNCHES (1 April 2004) LaunchesFailuresPeriodSuccess rate Ariane 111(2)1979/ Ariane 2-317(2)1984/ Ariane 4116(3)1988/ Ariane 5G17(2)1996/ Ariane 5 ECA1(1)2002N.A.


Download ppt "Introduction to the Ariane launchers family Ing. Luca del Monte ESA-HQ, Paris Corso di Propulsione Aerospaziale Universitadi Roma La Sapienza A.A. 2004-05."

Similar presentations


Ads by Google