Presentation is loading. Please wait.

Presentation is loading. Please wait.

On Computing Multiple Eigenvalues, the Jordan Structure and their Sensitivity Zhonggang Zeng Northeastern Illinois University Sixth International Workshop.

Similar presentations


Presentation on theme: "On Computing Multiple Eigenvalues, the Jordan Structure and their Sensitivity Zhonggang Zeng Northeastern Illinois University Sixth International Workshop."— Presentation transcript:

1 On Computing Multiple Eigenvalues, the Jordan Structure and their Sensitivity Zhonggang Zeng Northeastern Illinois University Sixth International Workshop on Accurate Solution of Eigenvalue Problems (IWASEP VI) May 23, 2006, Penn State Univ

2 Objectives: - Multiple eigenvalues - Staircase decomposition Jordan decomposition A = XJX -1 follows, if necessary 1  + + + ++++++++ ++++++ AU = U - Sensitivity

3 JCF computing … 1966: Kublanovskaya 1970: Varah 1970: Ruhe 1976: Golub & Wilkinson 1979: Van Dooren 1980: Kagstrom & Ruhe 1983: Demmel 1987: Demmel & Kagstrom 1993: Demmel & Kagstrom 1997: Edelman, Elmroth & Kagstrom … Main difficulty: accuracy of multiple eigenvalues 2

4 0 10 3 0 -1 -1 -4 0 0 -5 -5 0 1 0 0 -1 0 -5 -1 0 -3 -1 0 5 9 -1 3 -2 -1 1 1 -2 -2 1 -1 1 1 2 -1 -1 1 0 -1 1 3 1 7 2 -2 -11 1 0 6 -4 -3 6 0 5 -1 0 -3 -2 -1 0 0 0 -1 1 5 2 3 1 -1 0 0 0 0 0 -1 0 1 2 0 0 1 0 -1 1 -4 -2 -9 -2 6 19 -2 0 -8 8 6 -8 1 -7 1 -2 4 4 2 0 0 -1 0 -1 1 -1 1 2 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 9 -2 4 -3 3 3 1 -2 -2 1 0 1 2 1 -1 -1 1 0 -1 0 1 0 1 0 0 -2 0 3 4 0 0 3 0 2 0 0 -1 0 0 0 0 0 1 -4 -2 0 1 4 1 0 3 5 4 0 -2 0 0 1 0 3 1 0 1 1 -1 1 -2 1 -1 3 -1 -1 -3 3 0 -3 0 -2 -1 0 1 0 0 0 0 0 5 2 6 2 -3 -16 1 0 12 -5 -1 12 0 9 -1 0 -5 -3 -2 0 0 0 -1 4 0 1 -2 -4 -1 0 0 -5 -4 3 4 0 -1 -2 0 -3 -1 0 -1 -2 1 0 1 0 0 -2 0 0 2 0 0 2 3 2 0 0 -1 0 0 0 0 0 0 -1 4 -3 3 -1 1 1 0 0 0 0 -2 3 3 1 0 0 0 0 0 1 0 2 12 -1 2 -7 0 0 2 -4 -3 2 -3 2 4 6 -1 -2 0 0 -1 3 -4 -1 -5 -2 2 12 -1 0 -7 4 3 -7 0 -6 1 3 4 2 1 0 0 0 0 11 8 1 -2 -12 -3 0 6 -9 -8 6 1 5 0 -1 0 -7 -2 0 -3 -1 -2 0 7 -2 5 1 -1 1 -2 0 0 -2 0 -1 1 1 0 4 3 -1 -1 0 3 2 6 2 -2 -7 1 0 2 -5 -4 2 -2 2 0 3 -1 -3 1 2 0 2 5 -12 -10 2 -3 1 5 -1 0 6 6 0 0 0 -2 -1 0 6 0 3 5 0 4 -9 0 1 0 1 4 -1 0 4 4 0 -4 0 0 4 0 4 0 1 6 4 2 0 2 0 0 -3 0 0 3 0 0 3 0 3 0 0 -2 0 0 0 0 3 Ill-posed Problem : Jordan Canonical Form (JCF) 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 JCF 3

5 Ill-posed problem : root-finding with coefficients in hardware precision: The computed roots: ++++ 4

6 Are multiple roots/eigenvalues really sensitive to perturbations? William Kahan (1972) They are sensitive to arbitrary perturbation, but may not be sensitive to structure preserving perturbation. 5

7 q projected polynomial with computed roots original polynomial p perturbed polynomial pejorative manifold A two staged algorithm: Determine the multiplicity structure (or manifold) Reformulate / solve least squares problem well-posed, and even well conditioned 6

8 For polynomial with (inexact ) coefficients in machine precision Stage I results: The backward error: 6.05 x 10 -10 Computed roots multiplicities 1. 000000000000 35320 2. 0000000000 3090415 3. 000000000 17619610 4. 000000000 109542 5 Stage II results: The backward error: 6.16 x 10 -16 Refined roots 1. 000000000000000 1. 99999999999999 7 3. 0000000000000 11 3. 9999999999999 85 ACM TOMS, 2004: Z. Zeng, Algorithm 835 -- MultRoot Math. Comp. 2005: Z. Zeng, Computing multiple roots of inexact polynomials 7

9 JCF computing: For a given matrix A find X, J: AX = XJ 1 1 1 J = find U, S, AU = U(I+S), U H U=I 8 Jordan form with Segre characteristics : [3,2,2,1] Staircase form with Weyr characteristics : [4,3,1] I+S=  + + + ++++++++ ++++++ Kublanovskaya (1966) Ruhe, Kagstrom, Wilkinson, Golub, Demmel, …

10 AY- Y(I +S) = 0 C * Y – I = 0 9 The problem is well-posed, may even well-conditioned is nonsingular if the Jordan structure is correct (Zeng and Li)

11 Gauss-Newton iteration on system Example: A 50x50 matrix with eigenvalues 1, 2, 3 with multiplicity 20, 15, 5 respectively 10

12 A two-stage strategy for computing JCF: Stage I: determine the Jordan structure and an initial approximation Stage II: Solve the reformulated least squares problem at each eigenvalue, subject to the structural constraint, using the Gauss-Newtion iteration. 11

13 eigenvalueSegre characteristics  5322  331  2 ---------------------------------------------------------------------------------------------------------------------------------------------------- 10 6 3 2 Minimal polynomials: Let v be a coefficient vector of p 1. Then for a random x A rank/nulspace problem 12

14 By a Hessenberg reduction, with A 1 = A, and a random x being the first column of Q, Rank/nulspace leads to p 1 ( ) (the 1 st minimal polynomial ) leads to p 2 ( ), p 3 ( ), … recursively 13

15 Minimal polynomials Ill-posed root-finding with approximate data Computing multiple roots of inexact polynomials, Z. Zeng, Math Comp 2005 Rank-revealing Root-findingJCF structure 14

16 Example: 100x100 matrix A with multiple eigenvalues 1, -1, 2, -2 50 simple eigenvalues: random 15

17 When matrix A is possibly approximate: perturbed matrix “nearest” matrix on  -- space of matrices manifold original matrix 16 Stage I: Determine the manifold (matrix bundle) Stage II: Solve the well-posed least squares problem

18 Sensitivity of an eigenvalue (simple or multiple) Condition number may substantially underestimate the error has some known weaknesses may fail to discriminate a multiple eigenvalue At a multiple eigenvalue,  infinity by definition, not by computation 17

19 Example: >> eig(A) ans = 2.00078250207872 + 0.00056834208954i 2.00078250207872 - 0.00056834208954i 1.99970128002318 + 0.00092011990651i 1.99970128002318 - 0.00092011990651i 1.99903243579620 2.00000000000000 >> norm((x*y')/(x'*y)) ans = 14.04290360613186 >> eig(A+E) ans = 1.99785628939037 1.99891738496176 + 0.00185657043184i 1.99891738496176 - 0.00185657043184i 2.00107196168888 + 0.00187502026186i 2.00107196168888 - 0.00187502026186i 2.00216501730835 Error estimate = 0.0000042 Actual error = 0.0022 The condition number fails to reveal ill-posedness 18

20 Example: Condition number log 10 (error bound) log 10 (error) 19

21 What is the minimum perturbation ||E|| such that an eigenvalue of A increases its multiplicity? For = 0: For = 0.1: Kahan’s bound (1972) Wilkinson’s bound (1984) Demmel’s bound (1987) 20

22 Wanted: a measurement of sensitivity reliable in identifying a multiple eigenvalue can be estimated/computed efficiently 21

23 At an eigenpair (, x ) of A, define a condition number speculation: cost: O(n 2 ) the distance ||E|| to the nearest bundle with being a double eigenvalue  ( ) = infinity at a multiple eigenvalue 22

24 >> eig(A) ans = 2.00078250207872 + 0.00056834208954i 2.00078250207872 - 0.00056834208954i 1.99970128002318 + 0.00092011990651i 1.99970128002318 - 0.00092011990651i 1.99903243579620 2.00000000000000 Example: log 10 (error bound) log 10 (error) log 10 (new error bound) Example: Condition numbers 23

25 After obtaining an m-fold eigenvalue  in staircase decomposition define If A+E is the nearest matrix with (m+1)-fold if multiplicity m is wrong Sensitivity of an m-fold eigenvalue 24

26 Example: 12x12 Frank matrix >> F = frank(12) F = 12 11 10 9 8 7 6 5 4 3 2 1 11 11 10 9 8 7 6 5 4 3 2 1 0 10 10 9 8 7 6 5 4 3 2 1 0 0 9 9 8 7 6 5 4 3 2 1 0 0 0 8 8 7 6 5 4 3 2 1 0 0 0 0 7 7 6 5 4 3 2 1 0 0 0 0 0 6 6 5 4 3 2 1 0 0 0 0 0 0 5 5 4 3 2 1 0 0 0 0 0 0 0 4 4 3 2 1 0 0 0 0 0 0 0 0 3 3 2 1 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 1 1 Eigenvalue Condition number 0.03102744447368 18281388.1 0.04950888583700 38773448.2 0.08122648015585 26647311.8 0.14364690493016 6701300.4 0.28474967198534 560311.0 0.64350532103739 14466.8 1.55398870911557 216.1 3.51185594858010 6.9 6.96153308556711 1.7 12.31107740086854 3.1 20.19898864587709 5.0 32.22889150157213 3.3 + R -0.00000000025159 0.00000003957120 -0.00000000049184 -0.00000098980397 0.00000008765356 0.00001538421795 -0.00000205331981 -0.00017578611054 0.00003066233014 0.00154219061561 -0.00033766919246 -0.01044234247091 0.00284564181729 0.05361151873827 -0.01836110020880 -0.19998617218797 0.08857192169246 0.49723892540802 -0.30283241761169 -0.66937659896642 0.65751125003779 0.13279795424950 -0.68394528652648 0.49403745520757 F = -0.00000000025159 0.00000003957120 -0.00000000049184 -0.00000098980397 0.00000008765356 0.00001538421795 -0.00000205331981 -0.00017578611054 0.00003066233014 0.00154219061561 -0.00033766919246 -0.01044234247091 0.00284564181729 0.05361151873827 -0.01836110020880 -0.19998617218797 0.08857192169246 0.49723892540802 -0.30283241761169 -0.66937659896642 0.65751125003779 0.13279795424950 -0.68394528652648 0.49403745520757 0.03864934375529 -0.88858158392945 0 0.03864934375529 Staircase decomposition for a double eigenvalue: 25

27 Frank matrix is near matrices of an eigenvalue with multiplicity m = 2, = 0.03864934375529, distance = 3.9e-12,    = 1.34e+07 m = 3, = 0.05043386836727, distance = 4.7e-10,    = 2.73e+05 m = 4, = 0.07030194271661, distance = 3.9e-08,    = 9.04e+03 m = 5, = 0.10767505748315, distance = 2.1e-06,    = 5.40e+02 m = 6, = 0.18704749378810, distance = 7.1e-05,    = 6.48e+01 26

28 Condition estimator - Approximate(or power iteration) - QR decomposition Q R = - Inverse iterations: - Condition number: 27


Download ppt "On Computing Multiple Eigenvalues, the Jordan Structure and their Sensitivity Zhonggang Zeng Northeastern Illinois University Sixth International Workshop."

Similar presentations


Ads by Google