Presentation is loading. Please wait.

Presentation is loading. Please wait.

Atmospheric chemistry

Similar presentations


Presentation on theme: "Atmospheric chemistry"— Presentation transcript:

1 Atmospheric chemistry
Lecture 3: Tropospheric Oxidation Chemistry Dr. David Glowacki University of Bristol,UK

2 Yesterday… Today… We discussed photochemistry and kinetics
The earth’s atmosphere is a huge low temperature chemical reactor with variable temperature, pressure, and actinic flux All of these variables affect the rates of individual chemical reactions Today… Atmospheric chemistry is largely driven by free radical chain reactions We will discuss some of the important individual chemical reactions that are important in the troposphere

3 Why is atmospheric chemistry important?
Human activity is changing the composition of the atmosphere Regulatory policy requires an understanding of pollutant impact Atmospheric pollutants impact living organisms Health Vegetation (e.g., farming) & animals Climate change Atmospheric pollutants & their subsequent chemistry are responsible for: Acid rain Photochemical smog (e.g., arctic haze) Vegetation & animals Ozone hole

4 Atmospheric chemistry and Climate Change
Atmospheric chemistry plays an important role in radiative forcing processes Source: IPCC 4th assessment

5 Tropospheric Oxidation Starts with OH
O3 + h  O1D + O2 O1D + M  O1D + M O1D + H2O  2OH Degradation of atmospheric pollutants starts with the OH radical OH is often called ‘the detergent of the atmosphere’ OH is very reactive because it has an unpaired electron: O-H Measuring OH is hard! There’s not much of it, and it doesn’t live for long Tropospheric oxidation results in ground level O3, which is a greenhouse gas harmful to health FAGE OH detection instrument in Halley Base, Antarctica See:

6 O3 Photolysis makes OH O3 + hn g O2 + O(1D)

7 OH sinks OH Sinks: oxidation of reduced species
CO + OH g CO2 + H CH4 + OH g CH3 + H2O HCFC + OH g H2O + … Major OH sinks GLOBAL MEAN [OH] ~ 1.0x106 molecules cm-3

8 Initiation High NOx O3 sunlight NO2 NO OH HO2 VOC RO2 RO NO NO2

9 Initiation High NOx NO2 NO OH HO2 VOC RO2 RO NO NO2

10 Initiation High NOx NO2 NO OH HO2 VOC RO2 RO O2 NO NO2

11 Propagation High NOx NO2 NO OH HO2 VOC RO2 RO NO NO2

12 O3 High NOx VOC Ozone Formation NO2 NO OH HO2 RO2 RO NO NO2 O2
sunlight

13 O3 High NOx VOC Propagation NO2 NO OH HO2 oxidation product RO2 RO O2

14 O3 High NOx VOC Propagation NO2 NO OH HO2 oxidation product RO2 RO NO

15 O3 O3 High NOx VOC Ozone Formation sunlight O2 NO2 NO OH HO2
oxidation product VOC RO2 RO NO NO2 O3

16 High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3

17 O3 High NOx VOC Run Cycle NO2 NO OH HO2 oxidation product RO2 RO NO

18 High NOx O3 sunlight NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2

19 High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2

20 High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2

21 High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2

22 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO NO NO2 O2
sunlight

23 High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2 O3

24 High NOx NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3

25 O3 O3 High NOx VOC sunlight O2 NO2 NO OH HO2 oxidation product RO2 RO

26 High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2 O3

27 High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3

28 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO NO NO2 O2
sunlight O3

29 High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO O2 NO NO2 O3 O3

30 High NOx O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3 O3

31 O3 O3 O3 O3 High NOx VOC sunlight O2 NO2 NO OH HO2 oxidation product

32 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO O2 NO

33 High NOx O3 O3 NO2 NO OH HO2 oxidation product VOC RO2 RO NO NO2 O3 O3

34 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO NO
sunlight O3 O3

35 O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO

36 O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO

37 O3 O3 O3 O3 O3 O3 O3 High NOx VOC sunlight O2 NO2 NO OH HO2
oxidation product VOC RO2 RO NO NO2 O3 O3 O3 O3

38 O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2 oxidation product RO2 RO

39 Ozone Production O3 O3 O3 O3 O3 O3 High NOx VOC NO2 NO OH HO2
oxidation product VOC RO2 RO NO NO2 O3 O3 O3

40 Chemistry of ozone formation
sunlight O2 sunlight NO2 NO OH HO2 oxidation product VOC RO2 RO O2 O2 NO NO2 O2 O3 sunlight

41 Initiation Low NOx O3 O3 O3 sunlight OH

42 Initiation Low NOx O3 O3 OH VOC RO2

43 Termination Low NOx O3 O3 OH VOC RO2 HO2 ROOH

44 General VOC oxidation scheme
O3 + h  O1D + O2 O1D + H2O  2OH OH + RH (+O2)  RO2 + H2O RO2 + NO  NO2 + RO RO + O2  HO2 +R’CHO HO2 + NO  OH + NO2 NO2 + h  NO + O; O + O2  O3 OVERALL NOx + VOC + sunlight  ozone The same reactions can also lead to formation of secondary organic aerosol (SOA)

45 PO3  [NO] & independent of [RH]
OZONE CONCENTRATIONS vs. NOx AND VOC EMISSIONS Air pollution model calculation for a typical urban airshed NOx limited PO3  [NO] & independent of [RH] VOC limited PO3  [NO2]-1; PO3  [RH]

46 Polluters: Mobile Transportation: Generates NOx and VOC.
Reductions focus on catalytic converters and fuel additives as well as congestion abatement strategies Stationary industrial sources of VOC and NOx: Reductions involve scrubbing of pollutants from chimney stacks. Biogenic Emissions: Generate VOCs, no feasible reduction strategy, Can propose urban landscapes that reduce emissions

47 NOx sources

48 Spatial distribution of NOx emissions

49 NOx sinks & transport NOx lifetime ~1 day NOx sinks – primarily HNO3
HNO3 is water soluble PAN allows locally produced NOx to be transported on global scales

50 Other oxidizing species
NO3 NO2 + O3  NO3 + O2 NO3 is rapidly lost in the day by photolysis and reaction with NO ( NO2), so that its daytime concentration is low. It is an important night time oxidant. It adds to alkenes to form nitroalkyl radicals which form peroxy radicals in the usual way. O3 Ozone reacts with alkenes to form a carbonyl + an energised Criegee biradical. The latter can be stabilised or decompose. One important reaction product is OH: O3 reactions with alkenes can act as a source of OH, even at night.

51 VOC removal by reaction with OH
VOC Lifetime with respect to OH: Atmospheric distribution depends on lifetime. The Northern Hemisphere (NH) is a major source of anthropogenic pollutants. CH4 is distributed globally with a slight NH/SH difference. Isoprene is found only close to its sources. The oxidising capacity of the atmosphere refers to its capacity to remove VOCs and depends on [OH] (and the concentrations of other oxidants like O3 and NO3 OH + CH × 10-3 OH + CO × 10-1 OH + isoprene 1.1 × 102 OH + ethane 2.4 × 10-1 k(298K) in units of 10-12 cm3 molecule-1 s-1

52 HCHO + OH (+O2)  HO2 + CO + H2O
CH4 Oxidation Scheme CH OH (+O2)  CH3O H2O CH3O NO  CH3O NO2 CH3O O2  HO HCHO HO NO  OH NO2 HCHO OH (+O2)  HO CO H2O HCHO hn  H CO HCHO hn (+2O2)  2HO CO Note: 2 × (NO  NO2) conversions HCHO formation provides a route to HO2 radical formation.

53 Global budget for methane (Tg CH4 yr-1)
Sources: Natural 160 Anthropogenic 375 Total 535 Natural Sources: wetlands, termites, oceans… Anthropogenic Sources: natural gas, coal mines, enteric fermentation, rice paddies Sinks: Trop. oxidation 445 by OH Transfer to 40 stratosphere Uptake by soils 30 Total 515 Notes: The rate of oxidation is k5[CH4][OH], where the concentrations are averaged over the trop. 2. Concentrations of CH4 have increased from 800 to 1700 ppb since pre-industrial times 3. Methane is a greenhouse gas.

54 HISTORICAL TRENDS IN METHANE
Historical methane trend Recent methane trend Recent measurements at Mace Head in W Ireland. 1mg m-3 = 0.65 ppb NB – seasonal variation – higher in winter

55 GLOBAL DISTRIBUTION OF METHANE NOAA/CMDL surface air measurements
Seasonal dependence – higher in winter than summer (maximum in NH correlates with minimum in SH). NH concentrations > SH – main sources are in SH; slow transport across the intertropical conversion zone

56 General description of a chemical mechanism

57 Can we model oxidation results of other VOCs? …The MCM
Constructed by University of Leeds, in collaboration with Imperial College and UK Met Office Explicit mechanism, based on a protocol which describes the chemistry. Includes reactions of OH, NO3 and O3 and photolysis. For development protocol see: M.E.Jenkin et al. Atmos. Env., 1997, 31, 81. Describes the oxidation of 123 VOCs, based on the UK emissions inventory. It can be accessed via the web: The MCM is used by the UK Department of the Energy and Climate Change (DECC) to help develop its air quality strategy.


Download ppt "Atmospheric chemistry"

Similar presentations


Ads by Google