Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mechanisms of Stereoselective Polymerizations

Similar presentations


Presentation on theme: "Mechanisms of Stereoselective Polymerizations"— Presentation transcript:

1 Mechanisms of Stereoselective Polymerizations
Università di Salerno Italy Modeling Lab for Nanostructures And Catalysis Luigi Cavallo

2 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion-Pairs Final Remarks

3 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion-Pairs Final Remarks

4 Milano, Italy, 53 years and 4 days ago
Polypropylene made Nobel prize to Karl Ziegler and Giulio Natta in 1963 “Nature synthesizes many stereoregular polymers, for example cellulose and rubber. This ability has been so far thought to be a monopoly of Nature operating with biocatalysts known as enzymes. But now Prof. Natta has broken this monopoly… The scientific and technical consequences of your discovery are immense and cannot even now be fully estimated.” Presentation Speech, Stockholm, December

5 Milano, Italy, 53 years and 4 days ago
Polypropylene made Nobel prize to Karl Ziegler and Giulio Natta in 1963 “Nature synthesizes many stereoregular polymers, for example cellulose and rubber. This ability has been so far thought to be a monopoly of Nature operating with biocatalysts known as enzymes. But now Prof. Natta has broken this monopoly… The scientific and technical consequences of your discovery are immense and cannot even now be fully estimated.” Presentation Speech, Stockholm, December

6 Consequences of the discovery
About 100*106 tons/year of PE & PP in 2005 1 m3 blocks would wrap the equator 2.5 times

7 The Catalysts 1954 1962 1985 1988 2000 2001 TiCl3/AlR3 VCl4/AlR3
Brintzinger, Fischer, Mülhaupt, Rieger, Waymouth Angew Chem Int Ed 1995, 34, 1143 Resconi Cavallo Fait Piemontesi Chem Rev 2000, 100, 1253 Ewen Scientific American May 1997 Coates Chem Rev 2000, 100, 1223 TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1988 2000 2001 Ewen JACS 1984, 106, 6355 Kaminsky, Külper, Brintzinger, Wild ACIE Engl. 1985, 24, 507. Tshuva, Goldberg, Kol JACS 2000, 122, 10706 Ewen, Jones, Razavi, Ferrara JACS 1988, 110, 6255 Fujita, Kashiwa et al. Macromol. Rapid Commun. 2001, 22, 1072

8 The Catalysts 1954 1962 1985 1988 2000 2001 TiCl3/AlR3 VCl4/AlR3
Brintzinger, Fischer, Mülhaupt, Rieger, Waymouth Angew Chem Int Ed 1995, 34, 1143 Resconi Cavallo Fait Piemontesi Chem Rev 2000, 100, 1253 Ewen Scientific American May 1997 Coates Chem Rev 2000, 100, 1223 TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1988 2000 2001

9 The Catalysts 1954 1962 1985 1988 2000 2001 TiCl3/AlR3 VCl4/AlR3
Brintzinger, Fischer, Mülhaupt, Rieger, Waymouth Angew Chem Int Ed 1995, 34, 1143 Resconi Cavallo Fait Piemontesi Chem Rev 2000, 100, 1253 Ewen Scientific American May 1997 Coates Chem Rev 2000, 100, 1223 TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1988 2000 2001

10 Mechanism of Chain Growth
+ CH2=CH2 Cossee, P. J. Catal. 1964, 3, 80

11 The Chain-Migratory Mechanism
Step (i+1) Step (i)

12 The Three Polypropylenes
Same face enchainment Isotactic polypropylene (i-PP) Opposite faces enchainment n Syndiotactic polypropylene (s-PP) Random faces enchainment Atactic polypropylene (a-PP)

13 The Three Polypropylenes
Same face enchainment Isotactic polypropylene (i-PP) Opposite faces enchainment n Syndiotactic polypropylene (s-PP) Random faces enchainment Atactic polypropylene (a-PP)

14 Possible Stereomistakes
Enantiomorphic-site sterocontrol Chain-end Sterocontrol TiCl3/AlR3 Cp2TiCl2 at low T VCl4/AlR3

15 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion-Pairs Final Remarks

16 The Catalysts 1954 1962 1985 1989 2000 2001 TiCl3/AlR3 VCl4/AlR3
Brintzinger, Fischer, Mülhaupt, Rieger, Waymouth Angew Chem Int Ed 1995, 34, 1143 Resconi Cavallo Fait Piemontesi Chem Rev 2000, 100, 1253 Ewen Scientific American May 1997 Coates Chem Rev 2000, 100, 1223 TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1989 2000 2001 System with well defined chemistry! Ewen JACS 1984, 106, 6355 Kaminsky, Külper, Brintzinger, Wild ACIE Engl. 1985, 24, 507.

17 C2-symmetric systems (isospecific symmetry)
Mirror plane (R) (S) (S) (R) C2-axis C2-axis

18 C2-symmetric systems (isospecific symmetry)
(+)-Chain (S) (S) (S) (S) (–)-Chain

19 C2-symmetric systems (isospecific symmetry)
(+)-chain (–)-chain monomer + Mt P Orientations of the growing chain Messenger! (+)-Chain (S) (S) (S) (S) (–)-Chain

20 C2-symmetric systems (isospecific symmetry)
Favored ! (+)-Chain (S) (S) (S) (S) (–)-Chain

21 C2-symmetric systems (isospecific symmetry)
? re or si (+)-Chain (S) (S)

22 C2-symmetric systems (isospecific symmetry)
(+)-Chain (S) re (S)

23 C2-symmetric systems (isospecific symmetry)
Favored ! si re (+)-Chain (+)-Chain (S) (S) si (S) (S)

24 The Chain-Migratory Mechanism
Step (i+1) Step (i)

25 C2-symmetric systems (isospecific symmetry)
(+)-Chain (S) (S) si si C2-axis (S) (S) (+)-Chain

26 C2-symmetric systems (isospecific symmetry)
Homotopic coordination positions: the same monomer enantioface is favored at each step (i.e. an isotactic polymer is formed) Cavallo, Corradini, Guerra, Vacatello Polymer 1991, 32, 1329. (+)-Chain (S) (S) si si C2-axis (S) (S) (+)-Chain

27 The Catalysts 1954 1962 1985 1988 2000 2001 Solved! TiCl3/AlR3
VCl4/AlR3 1954 1962 1985 1988 2000 2001

28 The Catalysts 1954 1962 1985 1988 2000 2001 Solved! TiCl3/AlR3
VCl4/AlR3 1954 1962 1985 1988 2000 2001

29 Other systems Mechanism of the chiral orientation of the growing chain
Heterogeneous 1954 Metallocene 1985 Post-Metallocene 2000 Mechanism of the chiral orientation of the growing chain Corradini, Guerra, Cavallo Acc. Chem. Res. 2004, 37, 231

30 The Catalysts 1954 1962 1985 1988 2000 2001 Solved ? Solved! Solved!
TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1988 2000 2001

31 The Catalysts 1954 1962 1985 1989 1988 2000 2001 Solved ? Solved!
TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1989 1988 2000 2001 Ewen, Jones, Razavi, Ferrara JACS 1988, 110, 6255

32 CS-symmetric systems (syndiospecific symmetry)
Mirror plane

33 CS-symmetric systems (syndiospecific symmetry)
Mirror plane C2-axis

34 CS-symmetric systems (syndiospecific symmetry)
(+)-Chain si

35 CS-symmetric systems (syndiospecific symmetry)
(–)-Chain (+)-Chain si re Mirror plane

36 CS-symmetric systems (syndiospecific symmetry)
Enantiotopic coordination positions: opposite monomer enantiofaces are favored in successive steps (i.e. a syndiotactic polymer is formed) (–)-Chain (+)-Chain Cavallo, Corradini, Guerra, Vacatello Macromolecules 1991, 24, 1784. si re Mirror plane

37 The Catalysts 1954 1962 1985 1989 1988 2000 2001 Solved? Solved!
TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1989 1988 2000 2001

38 Chain Orientation as Messenger (1,2 propagation, site stereocontrol)
Configuration of the catalytic site Configuration of monomer insertion Flow of Information Stereoregular polymer

39 Chain Orientation as Messenger (1,2 propagation, site stereocontrol)
Configuration of the catalytic site (+)-chain (–)-chain Messenger! monomer + Configuration of the chirally oriented growing chain Configuration of monomer insertion Flow of Information Stereoregular polymer

40 Experimental Validation of the Mechanism
If the chiral orientation of the chain is the key element, without a long chain propene insertion shouldn’t be enantioselective… P

41 Experimental Validation of the Mechanism
NMR study of propene insertion into the M-CH3 bond Zambelli Locatelli Sacchi Tritto Macromolecules 1982, 15, 831. CH3

42 Experimental Validation of the Mechanism
Enantioselectivity of propene insertion into M-13CH3 13CH3 (50%) + 13CH3 (50%) Enantioselectivity of propene insertion into M-13CH2CH3 13CH2CH3 (10%) + (90%) 13CH2CH3 The mechanism of the chiral orientation of the growing chain is confirmed

43 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion-Pairs Final Remarks

44 The Catalysts 1954 1962 1985 1988 1989 2000 2001 Solved? Solved!
TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1988 1989 2000 2001 Fujita, Kashiwa et al. Macromol. Rapid Commun. 2001, 22, 1072

45 Regiochemistry of Insertion
TiCl3/AlR3 1 1 2 2 Primary (1,2) Insertion 2 2 1 1 VCl4/AlR3 Secondary (2,1) Insertion

46 Stereorigid Catalysts
Heterogeneous Ti-catalysts The bridge confers stereorigidity Interconversion impossible (R) (S) (R) (S)

47 Stereoflexible Catalysts
Homogeneous V-catalysts Withouth a bridge stereoflexible complexes Possible Interconversion

48 Chain-Site-Monomer Interaction
re-chain/D-site/si-propene (r-diad) Steric stress! E in kcal/mol

49 Chain-Site-Monomer Interaction
re-chain/D-site/si-propene (r-diad) Steric stress! E = 3.8 re-chain/L-site/re-propene (m-diad) Steric stress! E in kcal/mol

50 Chain-Site-Monomer Interaction
re-chain/D-site/si-propene (r-diad) Steric stress! E = 3.8 re-chain/L-site/re-propene (m-diad) Steric stress! E = 1.9 re-chain/D-site/re-propene (m-diad) Steric stress! E in kcal/mol

51 Chain-Site-Monomer Interaction
re-chain/D-site/si-propene (r-diad) Steric stress! E = 3.8 re-chain/L-site/re-propene (m-diad) Steric stress! E = 1.9 re-chain/D-site/re-propene (m-diad) Steric stress! Favored! re-chain/L-site/si-propene (r-diad) E in kcal/mol

52 A Possible Overall Picture
E in kcal/mol si-propene Ti-Pn re-chain/L-site Site Isomerization Ti-Pn+1 si-chain/L-site Stereoerror re-propene DE‡ = 1.9 si-propene Ti-Pn+2 re-chain/D-site Site Isomerization Ti-Pn+1 si-chain/D-site re-propene

53 Dissociative Mechanism on the basis of NMR-studies
Proposed Mechanism Dissociative Mechanism on the basis of NMR-studies Bickley & Serpone Inorg. Chem. 1979, 18, 2002 Bei, Dale, Swenson, Jordan OM 1997, 16, 3282 D-complex L-complex DG‡racemization = 10 ÷ 20 kcal/mol (Mt = Ti, Zr)

54 Monomer Assisted Dissociation
DFT calculations Dissociation Edissociation = 14.9 kcal/mol

55 Site Chirality as Messenger (1,2 propagation, site stereocontrol)
Configuration of the growing chain D-site L-site Messenger! Configuration of the fluxional octahedral active species Configuration of monomer insertion Flow of Information Stereoregular polymer

56 re-chain/D-site/si-propene
Other systems re-chain/L-site/si-propene (r-diad) re-chain/D-site/si-propene (r-diad) Mechanism of the chiral orientation of the growing chain Milano Guerra Cavallo JACS. 2004, 37, 231 First proposed: Corradini, Guerra, Pucciariello Macromolecules 1985, 13,42

57 The Catalysts 1954 1962 1985 1989 1988 2000 2001 Solved? Solved!
TiCl3/AlR3 VCl4/AlR3 1954 1962 1985 1989 1988 2000 2001

58 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion-Pairs Final Remarks

59 Enantioselectivity of Regiomstakes
C2-symmetric metallocene P Favored re P si Regiomstakes are enantioselective Guerra Cavallo Moscardi Vacatello Corradini J. Am. Chem. Soc. 1994, 116, 2988. CS-symmetric metallocene P re P Favored si

60 Enantioselectivity in 1,2 vs 2,1 insertion
C2-symmetric metallocene Opposite enantiofaces are favored in propagation and regiomistakes The same enantioface is favored in propagation and regiomistakes Guerra Cavallo Corradini Longo Resconi J. Am. Chem. Soc. 1997, 119, 4394. P si P re CS-symmetric metallocene P si P si

61 Selectivity in 2-butene/ethene Copolymerization
C2-symmetric metallocene P si P re P cis = CS-symmetric metallocene P si P si P trans =

62 Ethene/2-butene Copolymerization Tests
C2-symmetric metallocene P cis cis-butene is selectively copolymerized trans-butene is selectively copolymerized Guerra Longo Corradini Cavallo J. Am. Chem. Soc. 1999, 121, 8651. CS-symmetric metallocene P trans

63 Regiochemistry in Octahedral Systems

64 Octahedral-systems : Ligand Effect
Primary Insertion Slightly favored Strongly favored Secondary Insertion DE‡Regio kcal/mol 0.3 3.6

65 Octahedral-systems : Chain Effect
DE‡Regio kcal/mol Steric stress! 3.6 1.4 0.3 i-Bu i-Pr Growing Chain -2.0 A secondary chain pushes insertion towards another secondary insertion i-Bu i-Pr Growing Chain

66 Origin of Different Regiochemistry
Phenoxy-imine Phenoxy-amine Talarico Busico Cavallo JACS 2003, 125, 7172.

67 Origin of Different Regiochemistry
Me weak antibonding interaction strong Growing Chain Alkene Phenoxy-imine Phenoxy-amine Talarico Busico Cavallo JACS 2003, 125, 7172.

68 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion Pairs Final Remarks

69 Ion-Pairs Metallocene/Borane H2Si(Cp)2ZrMe+/MeB(C6F5)3-
Energetic and structure of ion-pairs fundamental to understand activity, copolymerizations, “microstructure” Static methods (i.e. classical QM calculations) not particularly suited Metallocene/Borane H2Si(Cp)2ZrMe+/MeB(C6F5)3- Metallocene/Borate H2Si(Cp)2ZrMe+/B(C6F5)4- Excellent NMR study on Metallocenium Ion-Pairs Zuccaccia, Stahl, Macchioni, Chen, Roberts, Marks J. Am. Chem. Soc. 2004, 126, 1448

70 Dynamics of Ion-Pairs Classical Molecular Dynamics Simulations
(i.e. no Quantum Mechanics) System simulated 1 Metallocenium ion-pair swollen in roughly 1100 benzene molecules Conditions : P = 1 atm, T = 25 °C Sampling time : 5 ns (can be longer) Correa and Cavallo J. Am. Chem. Soc. 2006, 128, 10952

71 Performance of the Model
The Metallocene/Borane Ion-pair Excellent agreement with several structural properties Correa and Cavallo JACS 2006, 128, 10952

72 Insight into the Metallocene/Borate Ion-Pair
F2 F3 (ps) The unclear NMR data are due to a continous fluctuation between different geometries (as found in our MD simulations) Correa and Cavallo JACS 2006, 128, 10952

73

74

75

76 Dynamic Behavior of the Metallocene/Borate Ion-pair
Future Applications of Classical Molecular Dynamics of the Catalyst/Counterion Pair : Dynamic Behavior of the Metallocene/Borate Ion-pair (Forming and breaking of M…F interactions) Moving to other metallocenes and to non-metallocenes Polymer chain extended to 10, 100, 1000 monomeric units Key to explain activity and copolymerizations ? Counterion displacement by a coordinating monomer

77 Outline Introduction Examples of Site Stereocontrol Examples of Chain-End Stereocontrol About Regiomistakes Ion-Pairs Final Remarks

78 Understanding the Mechanics… a previous teaching
Flying machine Codex B, f.74 (1485) Leonardo da Vinci ( ) Self-portrait Aerial screw Codex B, f.83 (1489)

79 Stereospecific Olefins Polymerization aka The best understood organometallic reaction
Experimentalists Karl Ziegler Giulio Natta John Ewen Tobin Marks Maurice Brookhart Jim Stevens Bob Waymouth Richard Jordan Hans-Herbert Brintzinger Walter Kaminsky Gerhard Fink Norio Kashiwa Tominaga Keii Kazuo Soga Terunori Fujita Adolfo Zambelli Umberto Giannini Luigi Resconi Vincenzo Busico Moshe Kol Theoreticians Paolo Corradini Gaetano Guerra Tom Ziegler Tom Woo Keiji Morokuma Giuliano Lanza All these people synergically contributed to understand the mechanisms of this reaction Absolutely not a comprehensive list!

80 Final Slide Why to understand ?
It is key for the rational design of new catalysts It allows to develop new catalysts faster It is an intellectual pleasure Computational chemistry It is a powerful tool for the rationalization and prediction of chemical behavior The New Lab Strong interaction between theoreticians and experimentalists

81 Acknowledgments The Crew
Dr. Computers U of Salerno Dr. G. Milano U of Salerno Dr. A. Correa U of Salerno Dr. C. Costabile U of Salerno Dr. G. Talarico U of Napoli Dr. L.Caporaso U of Salerno Dr. G. Moscardi Basell Polyolefins Dr. H. Jacobsen U of Tulane Dr. J. M. Ducéré U of Salerno Dr. J. Budria U of Eindhoven Financial Basell Polyolefins U of Salerno MURST PRIN-2004 project MURST FISR project Cineca Grant SuperCalcolo INSTM Italia

82 dōmo arigatō


Download ppt "Mechanisms of Stereoselective Polymerizations"

Similar presentations


Ads by Google