Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mass Spectrometer(MS)

Similar presentations


Presentation on theme: "Mass Spectrometer(MS)"— Presentation transcript:

1 Mass Spectrometer(MS)
분자가 MS 내로 들어가면 분자는 이온화됨과 동시에 더 작은 이온들(fragments)로 쪼개진다. 쪼개진 이온들은 그들의 질량/전하(m/z)비에 따라 선택적으로 분리되어 이온수에 비례해 signal을 만든다. 이온들의 질량/전하비는 이온들의 생성된 양(Abundance)의 함수로 표시되어 mass spectrum이 그려지며, 이 mass spectrum을 이용하여 미지성분의 정성확인을 할 수 있다. 이온은 양이온과 음이온 모두 사용

2 MS Component

3 MS component Sample inlet 시료도입장치로 시료를 MS내로 효율적으로 보내주는 역할을 한다
Ion source 시료분자를 이온화시키고 더 작은 이온으로 쪼갠다. 생성된 이온들을 MS analyzer 쪽으로 이동시킨다 Mass analyzer 이온들을 m/z ratio에 따라 선택적으로 분리시킨다 Ion detector 이온 흐름을 그 양에 비례하게 전기적인 흐름으로 전환, 증폭시켜 signal을 생성한다 Vacuum system MS 내 진공상태를 10-4 ~ 10-9 Torr 로 만들어 주어 최적의 상태로 분석이 진행될 수 있도록 한다 Data System MS 내 각 구성성분들의 조절이 가능하며 시료분석과 동시에 데이터해석을 할 수 있는 곳이다

4 Sample introduction / ionization method:
Typical Analytes Sample Introduction Mass Range Method Highlights Electron  Impact (EI) Relatively  small  volatile GC or  liquid/solid  probe to  1,000  Daltons Hard method  versatile  provides  structure info Chemical Ionization (CI) Soft method  molecular ion  peak [M+H]+ Electrospray (ESI) Peptides  Proteins  nonvolatile Liquid  Chromatography  or syringe to  200,000  Daltons Soft method  ions often  multiply  charged Fast Atom Bombardment (FAB) Carbohydrates  Organometallics  Peptides  nonvolatile Sample mixed  in viscous  matrix to  6,000  Daltons Soft method  but harder  than ESI or  MALDI Matrix Assisted Laser Desorption  (MALDI) Peptides  Proteins  Nucleotides Sample mixed  in solid  matrix to  500,000  Daltons Soft method  very high  mass Volatile:

5 Ion source Gaseous sample introduction - EI(electron ionization)
- CI(chemical Ionization) Liquid sample introduction - FAB(fast atom bombardment) - ESI(electrospray ionization)(soft ionization) Solid sample introduction - MALDI(soft ionization) (matrix-assisted laser desorption/ionization)

6 Ion Source - EI(electron ionization)
전자를 발생시키기 위한 filament가 가열되고 (+) 극판에 전압이 걸리면 가속된 전자들이 흐르고 그 속을 지나던 기체화된 sample은 전자와 충돌하여 에너지를 얻고 전자 하나를 잃어 분자이온 M+가 된다 이 방법은 큰 에너지를 사용하기 때문에 복잡한 spectrum을 이루며 분자 이온을 얻기 힘들다 M + e- ⇒ M+ + 2e-

7 Ion Source – CI(chemical Ionization)
가열된 filament에서 발생, 가속된 전자는 106 정도로 많은 reagent gas와 충돌하여 이들을 이온화시키고 이 reagent gas ion은 sample gas와 충돌 이 sample gas는 fragmentation 되기도 하고 때로는 reagent gas ion 과 complex를 이루기도 한다. 매우 낮은 에너지로 충돌하기 때문에 EI 보다 수백배 이상 많은 수의 분자 이온을 만들어 내기 때문에 분자량 확인에 많이 쓰인다. R(CH4) + e- ⇒ R+ + 2 e- R+ + M ⇒ M1+ + N1 M1+ ⇒ M2+ + N2

8 Ion Source: ESI Electrospray ionization(ESI) 용액 상태의 시료를 이온화(LC-MS)
기존의 방법으로는 얻기 힘들었던 intact 상태의 peptide나 단백질을 이온화 한 개 이상의 전하를 띤 이온을 생성

9 Ion Source: ESI 시료용액이 고전압이 걸려 있는 capillary를 통과하면서 분무되어 전하를 많이 띤 droplet이 생성됨 dropolet이 capillary에서 orifice를 지나면서 inert gas(or heat)에 의해 desolvation Desolvation 과정에서 ion의 charge는 더 증가하고 “Coulombic explosion”에 의해 droplet의 ion이 gas phase로 된다. sample에 가해지는 충격이 약하며, multiple charge를 가진 peptide이온이 생긴다. Orifice – 유출구, 구멍뚫린 판

10 Ion Source: ESI

11 Ion Source: ESI

12 Ion Source: ESI

13 Ion Source: ESI

14 Ion Source: MALDI Matrix Assisted Laser Desorption Ionization(MALDI)
matrix + analyte Sample support a m + Matrix와 sample을 약 1000~10000:1로 섞어서 적당한 유기 용매에 혼합 혼합물을 시료용 plate에 올려놓고 진공 조건 만들어주면 유기 용매는 기회되고 시료는 matrix와 함께 균질하게 결정화 된다. 이 때 laser조사하면 에너지가 matrix를 통해 sample로 전달되어 약한 이온화가 일어난다. 이온들은 전기장 사용해서 모으고 m/z에 따라 나누어 분석한다.

15 M A L D I matrix와 sample을 각 1000~10,000 : 1의 농도 비율로 적당한 용매(acidic organic solvent- TFA+MeCN)에 혼합한다 이 혼합물을 시료용 probe 에 올려 놓고 진공조건을 만들어 주면 유기용매는 기화되고 시료는 matrix 와 함께 균질하게 결정화 된다 이 때 펄스 레이져(UV at 337nm, IR(적외선) at 2.94um) 를 sample-matrix 결정에 쏘아주면 에너지가 matrix를 통해 sample로 전달되어 약한 이온화가 일어난다. 이온화는 protonation/deprotonation, cation attachment/cation detachment, oxidation/reduction으로 일어난다.

16 Why MALDI? -Less sensitive to salts -Lower PRACTICAL detection limits -Easier to interpret spectra(less multiple charges) -Quick and easy -Higher mass detection -Higher Throughput(1000>samples per hour) -less multiple charges: charge가 ESI 사용했을 때처럼 multiple charge가 아니라 거의 +1이다.

17 Matrix

18 Biomolecule Analysis 과거에는?
Electrophoresis, chromatography, ultracentrifugation Not very precise MS이용하면? Proteins, oligonucleotides, oligosaccharides, lipids Detect modifications and sequences

19 Biomolecule Analysis • Mass is one of first measurements to characterize biopolymers • Up to 1970s, had to use–Electrophoresis–Chromatography–Ultracentrifugation–Not very precise (10 –100% relative error!!) • May use MS on most biomolecules–Proteins–Oligonucleotides–Oligosaccharides–Lipids • May detect modifications and sequences–Post translational and other

20 Peptide Mass Fingerprinting
Analytical technique for protein identification (protein sequence) Unknown protein of interest cleaved into peptide by protease Collection of peptides resulting from this cleavage comprise a unique identifier of the unknown protein Mass measured with MALDI-TOF and ESI-TOF in silico compared to the genome In silico 생명정보학 용어로, 가상실험에서의 컴퓨터 프로그래밍을 뜻한다

21 Computer programs translate the known genome of the organism into proteins
Theoretically cut the proteins into peptides with the same protease (ex.Trypsin: K or R) Calculate the absolute masses of the peptides from each protein the masses of the peptides of the unknown protein vs the theoretical peptide masses of each protein encoded in the genome Results statistically analyzed to find the best match

22 In Gel Digestion & Mass Spectrometry

23 Trypsin Digest Cut out 2D-Gel Spot Protein Peptides

24 Peptide Mass Fingerprinting
K K K R K K R Trypsin K K K K R K Protein R R R R C N K K Tryptic peptide mixture. Masses measured by MS. Every peptide has a basic C-terminus. R C A protein can be identified in a database by matching masses of a subset of the tryptic peptides against calculated values.

25 intact protein peptide fragments enzyme
MEMEKEFEQIDKSGSWAAIYQDIRHEASDFPCRVAKLPKNKNRNRYRDVS PFDHSRIKLHQEDNDYINASLIKMEEAQRSYILTQGPLPNTCGHFWEMVW EQKSRGVVMLNRVMEKGSLKCAQYWPQKEEKEMIFEDTNLKLTLISEDIK SYYTVRQLELENLTTQETREILHFHYTTWPDFGVPESPASFLNFLFKVRE SGSLSPEHGPVVVHCSAGIGRSGTFCLADTCLLLMDKRKDPSSVDIKKVL LEMRKFRMGLIQTADQLRFSYLAVIEGAKFIMGDSSVQDQWKELSHEDLE PPPEHIPPPPRPPKRILEPHNGKCREFFPNHQWVKEETQEDKDCPIKEEK GSPLNAAPYGIESMSQDTEVRSRVVGGSLRGAQAASPAKGEPSLPEKDED HALSYWKPFLVNMCVATVLTAGAYLCYRFLFNSNT

26 Peptide Mass Fingerprinting
2D-Gel Database “Spot removal” In Silico Digestion In Gel Digestion 848.3 1272.7 493.2 882.6 2978.3 364.1 948.9 3128.8 3514.2 2837.1 263.9 147.4 1429.7 199.6 142.3 640.8 848.1 1272.5 492.6 883.2 2978.9 812.6 1432.3 3127.1 996.8 702.4 164.9 2748.2 MS Advantage : only the masses of the peptides have to be known Disadvantage : - the protein sequence has to be present in the database of interest - most PMF algorithms assume the peptides come from a single protein Is identical to

27 Protein sequence Analysis

28 Protein sequence Analysis

29 Deduction of Full Amino Acid Sequence of a Protein
by Overlapping the Sequences Obtained from individual Peptides

30 Edman Degradation Sequentially Removes One Residue at a Time
from the Amino End of a Peptide up to 50 times Each round can be complete within 1 hr and the Edman degradation can be repeated up to 50 cycles in Practice.

31 Measured peptide mass 와 sequence가 맞지 않는 경우
The additional masses are due to posttranslational or artifactual modifications or post-translational processing Unspecific proteolysis had occurred or contaminating protease was present Protein was part of a mixture of ‘contaminating’ proteins

32 Post Translational Modifications(PTM’s)
PTM’s are very important in signaling as well as metabolic pathways (e.g. phosphorylation) Often we want to know not only which modification a protein has undergone, but exactly where in the sequence the modification lies. Many of the search engines allow for “variable” modifications, but very few at one time (combinatorialy explosive) There is great opportunity here for robust searches that find PTM’s reliably!

33 Phosphorylation site analysis strategies
Complication of phosphoprotein analysis - the frequently low stoichiometry of phosphorylation - the presence of multiple, differentially phosphorylated forms In vitro analysis - scale up of protein by kinase reaction - comparison with 2D-PP maps of in vivo (confirmation of identity indirectly) - MS analysis 화학반응에서 반응물과 생성물의 양적 관계에 대한 이론이다. 화학반응 전후 원자의 개수와 양이 보존된다는 사실에 바탕을 둔다

34 Detection and isolation of phosphoproteins
For the analysis of the site(s) of protein phosphorylation - purification of phosphoprotein - enzymatic or chemical fragmentation of the phosphoprotein - Isolation, separation, analysis of peptide Isolation - separation of proteins by gel electrophoresis - fragmentation of the phosphoprotein band or spot - extraction of the generated phosphopeptide More positive identification - 32 P radiolabelling : in vivo(32 PO4), in vitro([γ-32P]ATP) - western blotting : particularly tyrosine phosphorylated protein

35 Separation of phosphopeptides
필요한 이유 - 농도를 농축하는 역할을 하여 S/N 비를 높임 - radiolabel의 activity를 이용하여 phosphopeptide의 상대적 또는 절대적인 양을 구할 수 있음 - separation에 의해 확보된 재현성으로 단백질의 phosphorylation 상태를 정량적으로 결정할 수 있음 - nonpeptide contaminants를 제거하여 적은 양의 phosphopeptide의 분석을 용이하게 함

36 Phosphopeptide separation techniques
By 2-dimensional phosphopeptide map Reversed-phase HPLC High-resolution gel electrophoresis Immobilized metal affinity chromatogrphy(IMAC) Phosphopeptide는 상대적, 절대적으로 적은 양 때문에 분석이 어려우므로 이러한 점을 극복할 수 있는 최적의 separation방법을 선택해야

37 Separation by 2D-PP 1st dimension by electrophoresis on thin-layer cellulose plate + 2nd dimension by TLC on the same plate information - radiolabelled spot 수 ⇒ phosphorylated sites 최대수 - radiolabelled spot의 intensity ⇒ peptide 들의 상대적인 phosphorylation 정도 - relative state between phosphopeptide MS analysis after extraction from plate - protease양이 중요 sensitive and reproducible by radiolabelling ‘thin-layer chromatography(얇은막 크로마토그래피)’의 약어이다.

38 Separation by RP-HPLC Reproducible and simple
column으로 분리하고 radioactivity count로 fraction ⇒ count를 시간의 함수로 하여 radioactive fraction의 수를 알 수 있음 단점 - very hydrophilic phosphopeptide, very hydrophobic phosphopeptide의 분리가 어렵다 - 2D-PP보다 resolution이 낮다 - phosphopeptide will stick to metal surface 장점 - ESI MS와 on line으로 연결하여 사용할 수 있다(LC-MS/MS) - isotope을 사용할 수 없는 인체 단백질 분석 가능

39 Separation by high-resolution electrophorsis and IMAC
High-resolution gel electrophoresis - 2-DE - 특정 phosphopeptide의 손실이 많지만 널리 보급되어 있어 사용하기 좋음 IMAC - 같은 sequence를 갖는 nonphosphorylated peptide에 비하여 상대적으로 매우 적은 양의 phosphorylated peptide의 분석 어려움 - separation and enrichment 1) phosphopeptide와 metal(Fe3+ ,Ga3+)의 chelating 2) elution by phosphate or increased pH 3) acidic amino acid 도 enrichment 되는 단점

40 Determination of the type of phosphorylated amino acid
이유 가능한 phosphorylated site의 수를 찾아냄으로써 polypeptide 내의 phosphorylated residues의 assignment를 쉽게 할 수 있음 Technique 1) phosphoamino acid analysis - 32P-amino acid(hydrolysate of 32P-labeled phosphoprotein or phosphopeptide) ⇒ autoradiography - phosphoamino acid standard ⇒ ninhydrin staining - sample과 standard의 비교 분석(보통 1site/phosphopeptide) 2) phospho-amino acid-specific immunodetection - antibodies specific for particular phospho-amino acid - 상업적으로 antibody판매

41 Determination of the site of phosphorylation
Chemical phosphopeptide sequencing - phosphopeptide sequencing by step-wise chemical degradation(nonradioactive, radioactive methods) - analyzed as phenylthiohydantoyl derivatives - not available in very limited amount Mass spectrometric analysis of phosphopeptides - phosphopeptide의 양이 1pmole이상이면 2D-PP map에서 extraction이 가능하고, MS로 분석이 가능 - two basic theme 1) chemical lability of the phosphate ester bonds 2) the detection of the mass added to a peptide (80u) - product ion scan in a tandem MS으로 phosphorylation site 확인 ⇒ phosphorylated amino acid type을 알고 있으면 더 용이

42 Mass scan for phosphopeptides analysis
In-source CID - identify phosphopeptides by observation of H2PO4-(97U), PO3-(79U) and PO2-(63U) - detect phosphopeptides in negative ion mode and then switch to positive ion mode Neutral loss scan - positive ion mode with ESI in a TQ MS - Q1, Q3 are scanned over different m/z ranges - neutral loss of phosphoserine and phosphothreonine : 98 CID 전하주입 후 읽어냄 [charge injection device] 

43

44

45 Mass scan for phosphopeptides analysis
Presursor ion scan - negative ion ESI(다시 positive ion mode로 변경) - Q1 : continous scan, Q2 : ion fragmentation Q3 : 79m/z(PO3-)를 잃은 ion 만 통과 Product ion scanning - in-source CID, neutral loss and precursor ion scanning는 특수한 경우에만 phosphorylated residue를 identify - 상기 3가지 방법을 이용할 수 없는 경우 peptide fragment ion 전체에 대한 해석이 필요

46 Mass scan for phosphopeptides analysis
Post-source decay MALDI Enzymatic and chemical dephosphorylation - MALDI-TOF로 phosphopeptide의 mass 측정 + phosphate를 제거 후 MALDI-TOF로 mass 측정 - nonphosphorylated peptide에서 phosphopeptide 를 확인하는데 쉽게 이용 - identification of phosphorylation sites using MS/MS

47 Emerging methods and future directions in phosphoprotien analysis
in vivo와 비교해서 in vitro로 시험하나 동일하다는 보장이 없음 ⇒ in vivo를 직접 in vivo 32P-labeled protein을 충분히 얻는다는 것은 어려우므로 분석기기 감도를 높이는 것이 유리

48 Present and future challeges and opportunities
Protein identification and characterization has to be performed in a high-throughput manner, efficiently and with high accuracy and sensitivity Robotic system 2D-chromatography MS/MS

49

50


Download ppt "Mass Spectrometer(MS)"

Similar presentations


Ads by Google