Presentation is loading. Please wait.

Presentation is loading. Please wait.

Which of the following is NOT one of the tectonic stresses experienced by Earth’s crust? Compressional. Tensional. Torsional. Shear. C. Torsional.

Similar presentations


Presentation on theme: "Which of the following is NOT one of the tectonic stresses experienced by Earth’s crust? Compressional. Tensional. Torsional. Shear. C. Torsional."— Presentation transcript:

1 Which of the following is NOT one of the tectonic stresses experienced by Earth’s crust?
Compressional. Tensional. Torsional. Shear. C. Torsional

2 Which of the following is NOT one of the tectonic stresses experienced by Earth’s crust?
Compressional. Tensional. Torsional. Shear. Explanation: Torsion is a rotational stress. Sections of crust can be pushed together, pulled apart, or slid past one another. C. Torsional

3 When rock deforms elastically,
it is permanently deformed after stress is removed. it returns to its original size and shape after stress is removed. it stretches irreversibly, even after stress is removed. it fractures along planes of weakness when stress is applied. B. it returns to its original size and shape after stress is removed.

4 When rock deforms elastically,
it is permanently deformed after stress is removed. it returns to its original size and shape after stress is removed. it stretches irreversibly, even after stress is removed. it fractures along planes of weakness when stress is applied. Explanation: Elastic means behavior like a rubber band—it returns to original size and shape after stressed and released. B. it returns to its original size and shape after stress is removed.

5 When rock deforms plastically,
it is permanently deformed after stress is removed. it returns to its original size and shape after stress is removed. it stretches irreversibly, even after stress is removed. it fractures along planes of weakness when stress is applied. A. it is permanently deformed after stress is removed.

6 When rock deforms plastically,
it is permanently deformed after stress is removed. it returns to its original size and shape after stress is removed. it stretches irreversibly, even after stress is removed. it fractures along planes of weakness when stress is applied. Explanation: Plastic means behavior like chewing gum—it stays deformed when stressed and released. A. it is permanently deformed after stress is removed.

7 When rock is stressed beyond its elastic limit,
minerals undergo retrograde metamorphism. the rock loses heat. a new elastic limit is established. it deforms plastically or breaks. D. it deforms plastically or breaks.

8 When rock is stressed beyond its elastic limit,
minerals undergo retrograde metamorphism. the rock loses heat. a new elastic limit is established. it deforms plastically or breaks. Explanation: Folds and faults form when the elastic limit is surpassed. Cold rock is more brittle than warm rock, so warm rock deforms plastically to produce folds, and cold rock breaks to produce faults. Confining pressure also plays a role in determining elastic and plastic limits. D. it deforms plastically or breaks.

9 Rock in the center (or core) of a syncline is
younger than rock horizontally away from the center. the same age as rock horizontally away from the center. older than rock horizontally away from the center. younger or older than rock horizontally away from the center. A. younger than rock horizontally away from the center.

10 Rock in the center (or core) of a syncline is
younger than rock horizontally away from the center. the same age as rock horizontally away from the center. older than rock horizontally away from the center. younger or older than rock horizontally away from the center. Explanation: Think of a syncline as being shaped like a bowl. Sedimentary rocks are deposited horizontally with newer, younger rock on top of older rock. Flatten out the bowl by squishing and spreading it out. If the bowl was layered rock, can you see that younger rock forms the outside or “upper” part (deposited last)? A. younger than rock horizontally away from the center.

11 Rock in the center (or core) of an anticline is
younger than rock horizontally away from the center. the same age as rock horizontally away from the center. older than rock horizontally away from the center. younger or older than rock horizontally away from the center. C. older than rock horizontally away from the center.

12 Rock in the center (or core) of an anticline is
younger than rock horizontally away from the center. the same age as rock horizontally away from the center. older than rock horizontally away from the center. younger or older than rock horizontally away from the center. Explanation: Think of an anticline as shaped like an “A” or an upside-down bowl. Sedimentary rocks are deposited horizontally with newer, younger rock on top of older rock. Flatten out the “A” by squishing and spreading it out. If the “A” was layered rock, can you see that younger rock forms the outside or “upper” part (deposited last)? C. older than rock horizontally away from the center.

13 Normal faults are the result of
compression. tension. shear. a combination of compression, tension, and shear. B. tension.

14 Normal faults are the result of
compression. tension. shear. a combination of compression, tension, and shear. Explanation: The production of normal faults is one way that Earth’s crust stretches. B. tension.

15 Reverse faults are the result of
compression. tension. shear. a combination of compression, tension, and shear. A. compressed.

16 Reverse faults are the result of
compression. tension. shear. a combination of compression, tension, and shear. Explanation: The production of reverse faults is one way that Earth’s crust thickens. A. compression.

17 Strike-slip faults are the result of
compression. tension. shear. a combination of compression, tension, and shear. C. shear.

18 Strike-slip faults are the result of
compression. tension. shear. a combination of compression, tension, and shear. Explanation: Strike-slip faults have horizontal movement caused by shearing. C. shear.

19 For a normal fault, the hanging wall moves
sideways. obliquely. up. down. D. down.

20 For a normal fault, the hanging wall moves
sideways. obliquely. up. down. Explanation: A block of rock of a certain size will be lengthened horizontally if a fault forms and the hanging wall moves down. Normal faults are the result of tension. D. down.

21 For a reverse fault, the hanging wall moves
sideways. obliquely. up. down. C. up.

22 For a reverse fault, the hanging wall moves
sideways. obliquely. up. down. Explanation: A block of rock of a certain size will be shortened horizontally if a fault forms and the hanging wall moves up. Reverse faults are the result of compression. C. up.

23 Mountains are grouped into all the following classifications EXCEPT
normal-thrust mountains. folded mountains. upwarped mountains. fault-block mountains. A. Normal-thrust mountains

24 Mountains are grouped into all the following classifications EXCEPT
normal-thrust mountains. folded mountains. upwarped mountains. fault-block mountains. A. Normal-thrust mountains

25 Which of the following is NOT one of the three main types of volcanoes?
Composite cone. Shield volcano. Cinder cone. Ash cone. D. Ash cone

26 Which of the following is NOT one of the three main types of volcanoes?
Composite cone. Shield volcano. Cinder cone. Ash cone. D. Ash cone

27 Composite cones are formed by the eruption of
fluid basaltic lava. alternating layers of lava, ash, and mud. ash, cinders, glass, and lava fragments. massive amounts of ash. B. alternating layers of lava, ash, and mud.

28 Composite cones are formed by the eruption of
fluid basaltic lava. alternating layers of lava, ash, and mud. ash, cinders, glass, and lava fragments. massive amounts of ash. Explanation: A composite cone is so named because it consists of layers of differing consistency. B. alternating layers of lava, ash, and mud.

29 Where is most of Earth’s fresh water found?
Lakes. Ice caps and glaciers. Rivers. Underground. B. Ice caps and glaciers

30 Where is most of Earth’s fresh water found?
Lakes. Ice caps and glaciers. Rivers. Underground. Explanation: 79% of Earth’s fresh water is currently locked up in ice! Less than 21% has the potential for use by land-based life. B. Ice caps and glaciers

31 The continental rise is
the elevated land next to a beach. the sloping region between the continental shelf and deep ocean. areas just barely above sea level. the wedge of sediment at the base of the continental slope. D. the wedge of sediment at the base of the continental slope.

32 The continental rise is
the elevated land next to a beach. the sloping region between the continental shelf and deep ocean. areas just barely above sea level. the wedge of sediment at the base of the continental slope. Explanation: The continental rise is created by submarine “landslides” called turbidity currents. D. the wedge of sediment at the base of the continental slope.

33 Ocean waves break at the shoreline because
the wave’s circular motion touches the seafloor in shallower water. the wave has nowhere to go. the wave’s circular motion increases, causing the wave to topple. transverse currents disrupt normal wave behavior. A. the wave’s circular motion touches the seafloor in shallower water.

34 Ocean waves break at the shoreline because
the wave’s circular motion touches the seafloor in shallower water. the wave has nowhere to go. the wave’s circular motion increases, causing the wave to topple. transverse currents disrupt normal wave behavior. Explanation: Ocean waves have longitudinal and circular components. The circular motion touches the ocean floor when the water depth is less than half the wave’s wavelength. A. the wave’s circular motion touches the seafloor in shallower water.

35 The compound that constitutes the majority of dissolved substances in ocean water is
sodium sulfate. magnesium chloride. sodium chloride. sodium fluoride. C. sodium chloride.

36 The compound that constitutes the majority of dissolved substances in ocean water is
sodium sulfate. magnesium chloride. sodium chloride. sodium fluoride. C. sodium chloride.

37 Precipitation that does not infiltrate becomes
groundwater. the water table. soil moisture. runoff. D. runoff.

38 Precipitation that does not infiltrate becomes
groundwater. the water table. soil moisture. runoff. Explanation: If water does not infiltrate, it stays on the surface and flows downslope. D. runoff.

39 The maximum amount of water a particular soil can hold is determined by the
porosity. permeability. degree of saturation. amount of recharge. A. porosity.

40 The maximum amount of water a particular soil can hold is determined by the
porosity. permeability. degree of saturation. amount of recharge. Explanation: Porosity is the percentage of open space in a soil. Water can only occupy open spaces—the higher the porosity, the larger the amount of water that can be held. A. porosity.

41 The maximum amount of water that can flow through a particular soil is determined by the
porosity. permeability. degree of saturation. amount of recharge. B. permeability.

42 The maximum amount of water that can flow through a particular soil is determined by the
porosity. permeability. degree of saturation. amount of recharge. B. permeability.

43 The work of surface water does all of the following EXCEPT
erosion. deposition. land subsidence. delta formation. C. Land subsidence

44 The work of surface water does all of the following EXCEPT
erosion. deposition. land subsidence. delta formation. Explanation: Groundwater withdrawal causes land subsidence. C. Land subsidence

45 Which of the following does the most work in deserts?
Water. Wind. Ice. Groundwater. A. Water

46 Which of the following does the most work in deserts?
Water. Wind. Ice. Groundwater. Explanation: Wind is an important shaper of land in the desert, creating such landforms as sand dunes. But running water is still the dominant agent of erosion and deposition in the desert. A. Water

47 Erosion by alpine glaciers creates
V-shaped valleys. U-shaped valleys. drumlins. moraines. B. U-shaped valleys.

48 Erosion by alpine glaciers creates
V-shaped valleys. U-shaped valleys. drumlins. moraines. Explanation: V-shaped valleys are characteristic of stream erosion. Drumlins and moraines are depositional features, not erosional. B. U-shaped valleys.

49 Which of the following is NOT a characteristic of continental glaciation?
Striations. U-shaped valleys. Drumlins. Moraines. B. U-shaped valleys

50 Which of the following is NOT a characteristic of continental glaciation?
Striations. U-shaped valleys. Drumlins. Moraines. Explanation: U-shaped valleys are characteristic of alpine glaciation. B. U-shaped valleys


Download ppt "Which of the following is NOT one of the tectonic stresses experienced by Earth’s crust? Compressional. Tensional. Torsional. Shear. C. Torsional."

Similar presentations


Ads by Google