Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 7 The Other Sensory Systems

Similar presentations


Presentation on theme: "Chapter 7 The Other Sensory Systems"— Presentation transcript:

1 Chapter 7 The Other Sensory Systems

2 Audition: The Sense of Hearing
Physical stimulus: sound waves Sound waves are periodic compressions of air, water or other media. Sound waves are “transduced” into action potentials sent to the brain.

3 Audition Amplitude refers to the height and subsequent intensity of the sound wave. Loudness refers to the perception of the sound wave. Amplitude is one factor.

4 Audition Frequency refers to the number of compressions per second and is measured in hertz. Related to the pitch (high to low) of a sound.

5 Anatomy of the Ear The ear is divided into 3 parts: Outer ear
Middle ear Inner ear

6 Neuroanatomy Handout #5: The Auditory System
The outer ear includes: pinna (pl: pinnae) (A): focus sound waves into middle ear help locate the source of a sound external auditory canal (B): pathway to middle ear

7 Neuroanatomy Handout #5: The Auditory System
The middle ear includes: Tympanic membrane (C) (eardrum) vibrates when struck by sound waves 3 middle ear bones transmit information to the inner ear: malleus (D) incus (E) stapes (F)

8 Neuroanatomy Handout #5: The Auditory System The Inner Ear
The inner ear includes: Oval window (G): a second membrane, like the eardrum Semicircular canals (H): part of the vestibular system, involved in balance and equilibrium

9 Neuroanatomy Handout #5: The Auditory System
Cochlea (I): a snail shaped structure containing three fluid-filled tunnels auditory receptors (hair cells)

10 Hair cells: auditory receptors
(A,B) frogs (C) cat (D) lizard Figure 7.3: Hair cells from the auditory systems of three species. (a, b) Hair cells from a frog sacculus, an organ that detects ground-borne vibrations. (c) Hair cells from the cochlea of a cat. (d) Hair cells from the cochlea of a fence lizard. Kc = kinocilium, one of the components of a hair bundle. Fig. 7-3, p. 192

11 Neuroanatomy Handout #5: The Auditory System
Organ of Corti (K) Hair cells and two surrounding membranes in the cochlea

12 The Organ of Corti Hair cells (K1): auditory receptor cells
Supporting cells (K2): attached to flexible basilar membrane (L) Tectorial membrane (J) is more rigid and runs along other end of hair cells

13 Audition Auditory nerve (M)
exits the inner ear and carries information about sound to the auditory cortex

14 Theories of Pitch Perception
Frequency theory - the basilar membrane vibrates in synchrony with the sound and causes auditory nerve axons to produce action potentials at the same frequency. Place theory - each area along the basilar membrane is tuned to a specific frequency of sound wave.

15 Theories of Pitch Perception
The current pitch theory combines modified versions of both the place theory and frequency theory: Low frequency sounds best explained by the frequency theory. High frequency sounds best explained by place theory.

16 Theories of Pitch Perception
Volley principle states that the auditory nerve can have volleys of impulses (up to 4000 per second) even though no individual axon approaches that frequency by itself. provides justification for the place theory

17 Audition Which part of the brain helps process information about hearing? Primary auditory cortex located in the superior temporal cortex Each hemisphere receives most of its information from the opposite ear.

18 Audition The primary auditory cortex provides a tonotopic map
cells are responsive to preferred tones Damage can lead to deficits processing auditory info: loss of ability to identify a song or voice It does not result in a loss of hearing

19 Hearing Loss About 99% of hearing impaired people have at least some response to loud noises. Two categories of hearing impairment include: Conductive or middle ear deafness Nerve deafness

20 Hearing Loss Conductive or middle ear deafness:
Bones of middle ear fail to transmit sound waves properly to cochlea Caused by disease, infections, or tumerous bone growth near the middle ear. Can be corrected by surgery or hearing aids that amplify the stimulus.

21 Hearing Loss Nerve or inner-ear deafness:
Results from damage to cochlea, hair cells or auditory nerve Can be confined to one part of the cochlea people can lose certain frequencies Can be inherited or caused by prenatal problems or early childhood disorders

22 Audition Tinnitus: frequent or constant ringing in the ears
Experienced by many people with nerve deafness Sometimes occurs after damage to cochlea

23 Sounds that cause hearing loss
Heavy city traffic = 90 decibels Car horn = 110 decibels Headphones = 120 decibels (common volume) Jackhammer = 130 decibels Rock band at close range = 140 decibels Rocket launching = 180 decibels

24 The Mechanical Senses Mechanical senses respond to pressure, bending, or other distortions of a receptor. Mechanical senses include: Vestibular sensation (balance) Touch Pain Other body sensations

25 The Mechanical Senses The vestibular sense refers to the system that detects the position and the movement of the head. Directs compensatory movements of the eye and helps to maintain balance.

26 The Mechanical Senses Vestibular organ: in inner ear, adjacent to cochlea, consists of: two otolith organs calcium carbonate particles (otoliths) activate hair cells when head tilts three semicircular canals oriented in three different planes filled with jellylike substance that activates hair cells when the head moves

27 The Mechanical Senses Which part of the brain helps process information about our vestibular sense? Angular gyrus integrates balance and movement info with other sensations Located at border between parietal and temporal cortex

28 The Mechanical Senses Somatosensory system refers to sensation of the body and its movements and includes: discriminative touch deep pressure cold warmth pain itch tickle position and movement of joints

29 The Mechanical Senses Touch receptors can be: simple bare neurons
elaborated neuron ending bare ending surrounded by non-neural cells that modify its function Fig. 7-11, p. 201

30 The Mechanical Senses Pacinian corpuscle: type of touch receptor that detects sudden displacement or high-frequency vibrations on skin Mechanical pressure bends membrane increases flow of sodium ions and triggers an action potential

31 The Mechanical Senses Which part of the brain helps process information about touch? Somatosensory cortex of parietal lobe Info from touch receptors in head enters CNS through cranial nerves Info from receptors below head enters spinal cord and travels through spinal nerves to brain

32 The Mechanical Senses 31 spinal nerves
each has a sensory component and a motor component connects to a limited area of the body Dermatome: the skin area connected to a single sensory spinal nerve

33 The Mechanical Senses Pain depends on many axon types, neurotransmitters, and brain areas. Mild pain triggers the release of glutamate. Strong pain triggers the release of glutamate and substance P. Substance P results in the increased intensity of pain. Morphine and opiates block pain by blocking these neurotransmitters.

34 The Chemical Senses: Taste
Taste refers to the stimulation of taste buds by chemicals. Our perception of flavor is the combination of both taste and smell. Taste and smell axons converge in the endopiriform cortex.

35 The Chemical Senses: Taste
Taste receptors modified skin cells excitable membranes release neurotransmitters and excite neighboring neurons replaced every 10 to 14 days

36 The Chemical Senses: Taste
Papilla(e): structure(s) on surface of tongue that contain up to 10 taste buds Each taste bud contains approx. 50 receptors Most taste buds are located along the outside of the tongue in humans.

37 The Chemical Senses: Taste
Western societies have traditionally described sweet, sour, salty and bitter tastes as the “primary” tastes and four types of receptors. Evidence suggests a fifth type of glutamate receptor.

38 The Chemical Senses: Taste
Various areas of the brain are responsible for processing different taste information. Somatosensory cortex responds to the touch aspect of taste The insula is the primary taste cortex.

39 The Chemical Senses: Smell
Olfaction: detection and recognition of chemicals that contact membranes inside the nose Olfactory cells: receptor cells for smell Olfactory epithelium: membrane in rear of nasal passage Contains olfactory cells

40 The Chemical Senses: Smell
Which part of the brain helps process information about smell? Axons from olfactory receptors carry information to the olfactory bulb in the brain. The olfactory bulb sends axons to many areas of the cerebral cortex. Coding in the brain is determined by which part of the olfactory bulb is excited.

41 The Chemical Senses: Smell

42 The Chemical Senses: The VNO
Vomeronasal organ (VNO): set of receptors located near the olfactory receptors that are sensitive to pheromones Pheromones: chemicals released by an animal to affect the behavior of others of the same species The VNO and pheromones are important for most mammals, but less so for humans It is tiny in human adults and has no receptors. Humans unconsciously respond to some pheromones through receptors in the olfactory mucosa. Example: synchronization of menstrual cycles

43 Integration of the Senses
Synesthesia is the experience of one sense in response to stimulation of a different sense. Suggests some axons from one area have branches to other cortical regions.


Download ppt "Chapter 7 The Other Sensory Systems"

Similar presentations


Ads by Google