Presentation is loading. Please wait.

Presentation is loading. Please wait.

Best Practices of Biobanking and Specimen Collection: Quality Control Systems in Biobanking and Impact on Validity of Research Results Lunch and Learn.

Similar presentations


Presentation on theme: "Best Practices of Biobanking and Specimen Collection: Quality Control Systems in Biobanking and Impact on Validity of Research Results Lunch and Learn."— Presentation transcript:

1 Best Practices of Biobanking and Specimen Collection: Quality Control Systems in Biobanking and Impact on Validity of Research Results Lunch and Learn ASIP Annual Meeting at Experimental Biology 2012 April 23, 2012 Mark E. Sobel, MD, PhD ASIP Executive Officer

2 Outline ISBER Best Practices Biospecimen Science
Quality Control and Proficiency Testing NCI Best Practices Human Biological Materials Special Ethical Considerations

3 Acknowledgments Fay Betsou, PhD Integrated Biobank of Luxembourg
Presentation at ASIP Annual Meeting at Experimental Biology 2011 Carolyn Compton, MD Office of Biorepositories and Biospecimen Research National Cancer Institute National Institutes of Health OBBR slides in this presentation have been revised

4 International Society for Biological and Environmental Repositories
Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research Second Edition: Cell Preservation Technology, Volume 6, Number 1, 2008 Third Edition: Biopreservation and Biobanking Volume 10, Number 2, 2012

5 Biospecimen Science What is biospecimen science?
Biospecimen Science is the multidisciplinary field of study responsible for establishing tested and proven biospecimen resource-related procedures based on experimentation in the areas of specimen collection, processing, shipping, and storage Why is it needed? Biospecimens are composed of active and reactive living cells or cell products, making them highly complex. The collection, handling, and storage process can profoundly alter the molecular profile and quality of biospecimens. Such alterations, though artificial, can be misinterpreted as disease related or disease specific. High degrees of sensitivity and specificity in new molecular techniques raise the bar for analyte (specimen) data and quality.

6 Biospecimen Science Quality of human biospecimens is multifactorial and is determined by: Type of specimen: Normal tissue, tumor tissue, serum, plasma Physical state of the specimen Amount and type of specimen characterization data Amount and type of quality control exercised Amount and type of clinical data Permitted use of the specimen The analysis to be performed and the biomolecules targeted by the analysis The goal of the research (application of the data)

7 Quality Control - definition
« the operational techniques and activities that are used to satisfy quality requirements », ISO9000:2000 Nestler W. Effect of Quality Control programs on the organizational structure of the hospitals. Bull. NY Acad. Med. 1976;52: Glenn GC, Hathaway TK. Effects of specimen evaporation on quality control. Am. J. Clin. Pathol. 1976;66: Calam RR. Reviewing the importance of specimen collection. J. Am. Med. Tech. 1977;39: « confirmation through provision of objective evidence that requirements for a specific intended use or application are fulfilled », ISO9000:2000

8 Integrated Quality Control Systems
QC / Validation Biobank Biobank or Research Lab Sample Processing Method Quality Control Assay Method Validation / Proficiency Testing

9 ISBER Proficiency Testing Program: Interlaboratory comparisons to identify problems in laboratories and interlaboratory differences Launched in 2011 DNA Quantification RNA Integrity and Quantification Plans for 2012 (to be confirmed May 2012) Cell Viability Tissue Histology Tissue Antigenicity

10 in vivo Preanalytical Variables
Position - Fasting - Smoking - Stress - Circadian rhythms - Menstrual cycle - Pregnancy - Physical excercise Caffeine : - phosphodiesterase  cAMP degradation - adrenalin secretion  - triglycleride lipase  lipid acids linked to albumin  # of albumin-available sites

11 in vitro Preanalytical Variables
Collection tubes shedding of components from the tube silicones, polymeric surfactants, clot inhibitors or activators, rubber stoppers and plastics adsorption of serum proteins, RNA, DNA to the tube Anticoagulants citrate (dilution) heparin (binding) EDTA (platelet clumping) Clotting time and time of incubation before centrifugation Storage conditions RT, changes after 8h (m/z<3000) 4°C, changes after 48h freeze-thaw cycles, controversy (peptide aggregation, precipitation and adsorption)

12 SPREC-01 Biospecimen preanalytical code
Standard Preanalytical Coding for Biospecimens Cancer Epidemiology Biomarkers and Prevention 2010;19:

13 Ideal QC Biomarkers Measurable by widely accessible methods
Ubiquitous Measurable by widely accessible methods On/Off response Stability : capability of a sample material to retain the initial value of a measured quantity for a defined period of time within specific limits when stored under defined conditions ISBER BS WG, Cancer Epidemiol Biomarkers Prevention 2009;18:

14 Why validate QC methods ?
give full confidence in sample quality use samples after a long time provide « reference materials » ensure validity of research results

15 NCI Best Practices for Biospecimen Resources
Office of Biorepositories and Biospecimen Research National Cancer Institute National Institutes of Health U.S. Department of Health and Human Services

16 The Premise of Biospecimen Science
Quality of human biospecimens is multifactorial and is determined by the: Type of specimen: Normal tissue, tumor tissue, serum, plasma Physical state of the specimen Amount and type of specimen characterization data Amount and type of quality control exercised Amount and type of clinical data Permitted use of the specimen The analysis to be performed and the biomolecules targeted by the analysis The goal of the research (application of the data)

17 The Role of Biospecimen Resources in 21st Century Medicine
Biospecimen resources encompassing large quantities of high-quality, clinically annotated biospecimens are needed to: Identify and validate targets for detection, diagnosis, treatment, and prevention Identify disease mechanisms Develop a molecular-based taxonomy of cancer Develop screening tests for biomarkers associated with certain disease subtypes Group patients for testing of new drugs based on their genetic characteristics and likelihood of positive response Group patients based on the biomarkers of their disease to determine which treatment is appropriate Biospecimen resources are critical to accelerate the development of molecular-based diagnostics and therapeutics for personalized medicine

18 Key Requirements for Biospecimen Resources in the Post-Genomic Age
Diversity of cancer types and populations based on continual review of researcher needs Access through a timely, centralized, peer-review process Ethical and privacy compliance through a chain of trust Resources provided without intellectual property restrictions Pathology and clinical annotation (including longitudinal) State-of-the-art informatics system to streamline the research production process and create in silico research capabilities Communication and outreach efforts Best practice-based and data-driven SOPs to enable reproducible and comparable (additive) results

19 Specimen Collection, Processing, Storage, Retrieval, and Dissemination
Handle specimens as appropriate for specimen type and study design. Minimize collection/processing time as appropriate. Develop a comprehensive quality management system to include SOPs to document all protocols and a training program for all appropriate personnel. Annotate specimens with key collection, processing, and storage data. Monitor specimen inventory with a tracking system. Store specimens in a stabilized state without unnecessary thawing/refreezing. Dispose of specimens according to clear rules. Review and document storage equipment performance on a regular basis. Follow specimen-appropriate biosafety, packaging, and shipping procedures. Train personnel to adhere to specimen shipping regulations. Control and monitor required shipping temperature.

20 Collecting/Managing Clinical Data/QA/QC
Collecting and Managing Clinical Data Collect and store relevant clinical and epidemiologic data associated with a specimen, including longitudinal data, if applicable. Use an informatics system that tracks all aspects of collection, processing, and distribution. Comply with applicable privacy rules and human subjects regulations. Quality Assurance/ Quality Control Adhere to a written quality management system that describes QA and QC procedures. Maintain QA/QC training records for personnel. Adhere to and periodically review SOPs. Have security systems in place, including alarms and backup power. Include a computerized inventory tracking system in the data management plan. Develop a facility disaster plan. Maintain all equipment properly according to SOPs.

21 Biosafety Assume that all specimens are potentially infectious – provide appropriate vaccines, e.g., hepatitis. Adhere to governmental and accrediting agency requirements. Identify and address biosafety risks. Record exposure incidents and provide personnel with appropriate treatment. Establish indemnification agreements with users of biospecimens (except where prohibited by law). Develop additional policies and procedures as appropriate for chemical, electrical, fire, occupational, and radiological safety. Biosafety

22 Biospecimen Resource Informatics
Assign a unique identifier (number and/or barcode) to each specimen. Update the biospecimen resource database each time the specimen is moved or modified. Use informatics systems that support the linking of specimens with associated data and protect the health information of patients. Adhere to or initiate review of NCI Center for Bioinformatics guidelines and tools; caBIG™ “silver-level” compatibility is recommended. Biospecimen Resource Informatics: Data Management, Inventory Control, and Tracking

23 Access to Biospecimens and Data
Develop clear policies for specimen and data access. Develop clear guidelines for sample distribution and clinical data sharing (note: NCI Best Practices state that protocol-specific requirements should be met before other access is considered). Ensure that investigators have timely, equitable, and appropriate access, without undue administrative burden. Charge for samples only to recover costs. If a biospecimen resource needs to close, announce the availability of specimens for transfer. Restrict access to subjects’ identities and medical, genetic, social, and personal histories via data access system with defined privilege levels.

24 Privacy Protection/Custodianship
Protect the privacy of information and follow applicable regulations. Follow documented policies on employee access to data or specimens. Provide levels of security that are appropriate to the type of biospecimen resource. Custodianship Include plans for custodianship of collected specimens and associated data in biospecimen resource protocols. Develop plans to handle/dispose of specimens and associated data: At end of the budget period of the grant At completion of the specific research objectives of the study Identify and disclose financial conflicts of interest. In informed consent language, disclose that specimens may help to develop products, tests, or discoveries that may have commercial value.

25 Types of Human Biological Materials
Germline vs. Somatic cell Germline Inheritability Implications for immediate and extended family Implications for ethnic group Use of “normal” tissues Somatic cell Acquired mutations Use of diseased tissues No implications for family Click and type your text here 3 2

26 Types of Human Biological Materials
Unidentifiable vs Identifiable Unidentifiable Anonymous Anonymized Identifiable Coded (Linked) Identified Click and type your text here 3 2

27 Ethical Principles The Belmont Report
Respect for persons (personal autonomy) Beneficence Justice

28 Federal Regulations Department of Health and Human Services Common Rule, 45 CFR 46 Food and Drug Administration: 50 CFR 56 Institutional Review Boards Informed consent OHRP: Office of Human Research Protections HIPAA- April, 2003 Inconsistencies between HIPAA and the Common Rule Click and type your text here 2 3

29 Human Subjects Protection: Use of Human Biological Materials
HBMs include: Tissue samples Blood, sputum, urine, bone marrow, etc. Freshly obtained and archived materials HBMs are subject to the same regulations as human subjects directly enrolled in studies Therefore, informed consent and approval by an IRB may be required before using HBMs Click and type your text here 3 2

30 Identifiable HBMs- The Common Rule
Any HBM that can be identified by any one person, anywhere, is an identifiable sample If a sample is coded, and any investigator keeps a key to the code, the sample is identifiable Exception: If the recipient of the HBMs signs an agreement that there is no intent to identify the samples, the sample may be considered unidentifiable. Click and type your text here 3 2

31 Definition of a Human Subject-The Common Rule
Does NOT include: Deceased persons (autopsy specimens) Publicly available information Unidentifiable (Anonymous, Anonymized) Samples Click and type your text here 3 2

32 Waivers of Informed Consent-Common Rule
An IRB may grant a waiver of informed consent under the Common Rule (not the FDA) if four criteria are met: Minimal risk Respect for autonomy and the rights of the individual Impracticable Notification Click and type your text here 3 2

33 Waivers of Informed Consent-Common Rule
Waivers are rarely granted for identified samples Waivers are usually (but not always) granted for collecting anonymous samples Waivers are usually (but not always) granted for using anonymous or anonymized samples Waivers are occasionally granted for coded (linked) samples: Germline Somatic cell Click and type your text here 3 2

34 OHRP Guidance: Components of Repositories
Repository activities involve three components, each of which must satisfy certain requirements: collectors of tissue samples repository storage and data management center recipient investigators

35 OHRP Repository Guidance
Tissue collector Recipient Investigator Repository Storage and Data Management Center Tissue collector Recipient Investigator Tissue collector Recipient Investigator IRB Review Informed Consent Submittal Agreement Assurance of Compliance IRB Review Sample Informed Consent Certificate of Confidentiality Assurance of Compliance Recipient Agreement Local Policies

36 Ethical Principles for the 21st Century
Respect for persons (personal autonomy): Informed consent Respect for privacy and confidentiality Beneficence Justice


Download ppt "Best Practices of Biobanking and Specimen Collection: Quality Control Systems in Biobanking and Impact on Validity of Research Results Lunch and Learn."

Similar presentations


Ads by Google