Presentation is loading. Please wait.

Presentation is loading. Please wait.

GENETIC ENGINEERING.

Similar presentations


Presentation on theme: "GENETIC ENGINEERING."— Presentation transcript:

1 GENETIC ENGINEERING

2 GENETIC ENGINEERING The process of replacing specific genes in an organism in order to ensure that the organism expresses the desired trait. Takes genes from one organism and places into another

3 Where are the genes? Genome—refers to all the genetic material in an organism A gene map—shows the relative location of each known gene on a chromosome

4 How does it work? A single gene, a half page recipe in the 52-thousand-page set of recipe books, can direct an organism to make new traits or remove them

5 CLONING Clones are exact genetic copies…every single bit of the DNA is identical. Clones can happen naturally—identical twins

6 CLONING Cloning can be done at different levels: gene, therapeutic, or organismal

7 What cloning isn’t…

8 What cloning is…

9 CLONING

10 STEM CELLS Undifferentiated cells that have the potential to become specialized

11

12 GENE THERAPY Scientists insert a normal gene into an absent or abnormal gene Once inserted, the normal gene begins to produce the correct protein or enzyme, eliminating the cause of the disorder

13 GMO (GENETICALLY MODIFIED ORGANISMS)
Genetically modified (GM) foods possess specific traits such as tolerance to herbicides or resistance to insects or viruses. What is the potential human health impact? What is the potential environmental impact?

14 What Have I Eaten? GMO food list By most estimates, up to 70% of the processed foods at your local grocery store contain at least one ingredient that’s been genetically altered Genetically modified to travel better so don’t have to be picked when green – better tasting! Genetically modified to reduce being eaten by insects.

15 WHAT CAN GENETIC ENGINEERING DO FOR US??

16 Hope to develop plants that:
Can manufacture natural insecticides Are higher in protein Spoil more slowly

17 Sounds nice, but: Insecticides kill most insects, but some do survive…they have genes that are basically immune to the poison To get rid of THOSE insects, we need new poisons THINK ABOUT IT… There is so much poison being used, people have to wear protective suits!!! And THEN you eat that food!!!

18 Hope to develop animals that:
Are bigger Are faster growing Are resistant to disease The bad… Farmers use antibiotics, and as animals become resistant, they use even more… This leads to decreased nutritional value and an increase in antibiotic-resistant infections.

19 And the ugly… Recombinant bovine growth hormones (rBGH) are given to cows. rBGH is then found in milk products… Some studies have linked this hormone to infertility and fetal development problems (just from drinking milk!!) The milk even has PUS in it—from the infections the cows suffered from too much hormone! (EWWW)

20 Hope to develop bacteria that:
Produce hormones such as human insulin or human growth hormone But recently… Human insulin produced by GM microbes have caused human deaths! This is currently being investigated by the FDA.

21 In people with cystic fibrosis, one of the genes is faulty and cannot do its job properly.
To fix the problem, a copy of the same gene from a healthy person is spliced into a virus. The patient’s lungs are infected with the virus. It delivers the working gene into the patient’s cells. The cells can then make the right protein, and the patient can breathe normally. Patient’s cell Patient’s DNA Faulty Gene Virus DNA New working gene Virus DNA with new gene SOUNDS GOOD BUT…There have been no safety studies for long term effects of the genes. There could be unknown consequences…

22 Can We End World Hunger? Malnutrition and vitamin deficiencies?
Golden rice is genetically modified rice that now contains a large amount of A-vitamins. Or more correctly, the rice contains the element beta-carotene which is converted in the body into Vitamin-A. So when you eat golden rice, you get more vitamin A. Beta-carotene gives carrots their orange color and is the reason why genetically modified rice is golden. For the golden rice to make beta-carotene three new genes are implanted: two from daffodils and the third from a bacterium Golden rice

23 Can We End World Hunger? Malnutrition and vitamin deficiencies?
The thought… The rice can be considered a particular advantage to poor people in underdeveloped countries. They eat only an extremely limited diet lacking in the essential bodily vitamins. The consequences of this restricted diet causes many people to die or become blind. This is particularly true in areas of Asia, where most of the population live on rice from morning to evening. In reality… World hunger is a result of people not having access to food. The world produces about 12 billion tons of food per year, but only 7 billion tons are being consumed. Essentially, about 1/3 of our food supply is being wasted…GMOs aren’t going to help that!!!

24 Fast-growing salmon AquaBounty’s genetically modified salmon grows twice as fast as the conventional variety — the photo shows two same-age salmon with the genetically altered one in the rear. The company says the fish has the same flavor, texture, color and odor as a regular salmon; however, the debate continues over whether the fish is safe to eat. Genetically engineered Atlantic salmon has an added growth hormone from a Chinook salmon that allows the fish to produce growth hormone year-round. Scientists were able to keep the hormone active by using a gene from an eel-like fish called an ocean pout, which acts as an “on switch” for the hormone. If the FDA approves the sale of the salmon, it will be the first time the government has allowed modified animals to be marketed for human consumption. According to federal guidelines, the fish would not have to be labeled as genetically modified.

25 Fast-dying salmon??? GM salmon was created to increase the size of the fish more quickly, however, studies were conducted that showed that GM salmon are much less successful at producing viable offspring. Non-random mating habits of the wild salmon (they are more attracted to the larger GM salmon) would imply a die-off of the wild type genotypes leading to mass extinction of salmon populations. Computer simulations have predicted die-outs to occur in as little as 2 years after release into the wild. This would have a very serious impact on ecosystems all over the planet.

26 Will We Be Able To Cure Cancer With Gene Therapy?
Cancer happens when body cells grow out of control. Scientists have found a gene called p-53 which normally keeps cells under control. They think that in some people with cancer, the disease begins because the p-53 gene doesn’t work properly – perhaps because of a mistake in the gene code. Experts are now looking for a way to cure cancer by modifying faulty DNA to make the p-53 gene work. Lung cancer cells (530x). These cells are from a tumor located in the alveolus (air sac) of a lung.                              

27 Going Bananas? According to recent reports, the world may soon be out of bananas. Because of the starchy fruit’s unique method of reproduction, it seems, banana plantations in Africa, Asia and Central America are uniquely susceptible to fungi, viruses and pests. Unless scientists can find a way to genetically enhance the banana’s ability to ward off parasites, we could be bananaless in ten years. Several agroscience companies believe they can genetically engineer such an invincible banana by copying parts of the genetic codes of other fruits and instilling them into the banana.

28 Glow-in-the-dark cats
In 2007, South Korean scientists altered a cat’s DNA to make it glow in the dark and then took that DNA and cloned other cats from it — creating a set of fluffy, fluorescent felines. Here’s how they did it: The researchers took skin cells from Turkish Angora female cats and used a virus to insert genetic instructions for making red fluorescent protein. Then they put the gene-altered nuclei into the eggs for cloning, and the cloned embryos were implanted back into the donor cats — making the cats the surrogate mothers for their own clones. What’s the point of creating a pet that doubles as a nightlight? Scientists say the ability to engineer animals with fluorescent proteins will enable them to artificially create animals with human genetic diseases.

29 Enviropig The Enviropig, or “Frankenswine,” as critics call it, is a pig that’s been genetically altered to better digest and process phosphorus. Pig manure is high in phytate, a form of phosphorus, so when farmers use the manure as fertilizer, the chemical enters the watershed and causes algae blooms that deplete oxygen in the water and kill marine life. So scientists added an E. Coli bacteria and mouse DNA to a pig embryo. This modification decreases a pig’s phosphorous output by as much as 70 percent — making the pig more environmentally friendly.

30 Pollution-fighting plants
Scientists at the University of Washington are engineering poplar trees that can clean up contamination sites by absorbing groundwater pollutants through their roots. The plants then break the pollutants down into harmless byproducts that are incorporated into their roots, stems and leaves or released into the air. In laboratory tests, the transgenic plants are able to remove as much as 91 percent of trichloroethylene — the most common groundwater contaminant at U.S. Superfund sites — out of a liquid solution. Regular poplar plants removed just 3 percent of the contaminant.

31 Medicinal eggs British scientists have created a breed of genetically modified hens that produce cancer-fighting medicines in their eggs. The animals have had human genes added to their DNA so that human proteins are secreted into the whites of their eggs, along with complex medicinal proteins similar to drugs used to treat skin cancer and other diseases. What exactly do these disease-fighting eggs contain? The hens lay eggs that have miR24, a molecule with potential for treating malignant melanoma and arthritis, and human interferon b-1a, an antiviral drug that resembles modern treatments for multiple sclerosis.

32 Another way to manipulate genotypes and phenotypes of organisms is how we breed them…

33 SELECTIVE BREEDING Selecting and breeding only organisms with a desired trait in order to produce the next generation. Almost all domesticated animals and most crop plants are the result of selective breeding.

34 SELECTIVE BREEDING Once the breeder successfully produced offspring with the desired characteristic…usually inbreeding occurs. Remember…recessive gene defects will show up more frequently after several generations of inbreeding!

35 HYBRIDIZATION Another form of selective breeding
Choosing and breeding organisms that show strong expression for two different traits in order to produce offspring that express BOTH traits.

36 HYBRIDIZATION Labradoodle (Labrador Retriever + Poodle)
Puggle (Beagle + Pug) Cockapoo (Cocker Spaniel + Poodle)

37 HYBRIDIZATION HORSE + DONKEY = MULE

38 HYBRIDIZATION Female lion with a male tiger…TIGON Male lion with a female tiger…LIGER

39 Recognize this bird?


Download ppt "GENETIC ENGINEERING."

Similar presentations


Ads by Google