Presentation is loading. Please wait.

Presentation is loading. Please wait.

Table of Contents – pages iii

Similar presentations


Presentation on theme: "Table of Contents – pages iii"— Presentation transcript:

1

2 Table of Contents – pages iii
Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, and Fungi Unit 7: Plants Unit 8: Invertebrates Unit 9: Vertebrates Unit 10: The Human Body Table of Contents – pages iii

3 Table of Contents – pages vii-xiii
Unit 1: What is Biology? Chapter 1: Biology: The Study of Life Unit 2: Ecology Chapter 2: Principles of Ecology Chapter 3: Communities and Biomes Chapter 4: Population Biology Chapter 5: Biological Diversity and Conservation Unit 3: The Life of a Cell Chapter 6: The Chemistry of Life Chapter 7: A View of the Cell Chapter 8: Cellular Transport and the Cell Cycle Chapter 9: Energy in a Cell Table of Contents – pages vii-xiii

4 Table of Contents – pages vii-xiii
Unit 4: Genetics Chapter 10: Mendel and Meiosis Chapter 11: DNA and Genes Chapter 12: Patterns of Heredity and Human Genetics Chapter 13: Genetic Technology Unit 5: Change Through Time Chapter 14: The History of Life Chapter 15: The Theory of Evolution Chapter 16: Primate Evolution Chapter 17: Organizing Life’s Diversity Table of Contents – pages vii-xiii

5 Table of Contents – pages vii-xiii
Unit 6: Viruses, Bacteria, Protists, and Fungi Chapter 18: Viruses and Bacteria Chapter 19: Protists Chapter 20: Fungi Unit 7: Plants Chapter 21: What Is a Plant? Chapter 22: The Diversity of Plants Chapter 23: Plant Structure and Function Chapter 24: Reproduction in Plants Table of Contents – pages vii-xiii

6 Table of Contents – pages vii-xiii
Unit 8: Invertebrates Chapter 25: What Is an Animal? Chapter 26: Sponges, Cnidarians, Flatworms, and Roundworms Chapter 27: Mollusks and Segmented Worms Chapter 28: Arthropods Chapter 29: Echinoderms and Invertebrate Chordates Table of Contents – pages vii-xiii

7 Table of Contents – pages vii-xiii
Unit 9: Vertebrates Chapter 30: Fishes and Amphibians Chapter 31: Reptiles and Birds Chapter 32: Mammals Chapter 33: Animal Behavior Unit 10: The Human Body Chapter 34: Protection, Support, and Locomotion Chapter 35: The Digestive and Endocrine Systems Chapter 36: The Nervous System Chapter 37: Respiration, Circulation, and Excretion Chapter 38: Reproduction and Development Chapter 39: Immunity from Disease Table of Contents – pages vii-xiii

8 Change Through Time The History of Life The Theory of Evolution
Primate Evolution Organizing Life’s Diversity Unit Overview – pages

9 Chapter Contents – page ix
Chapter 15 The Theory of Evolution 15.1: Natural Selection and the Evidence for Evolution 15.1: Section Check 15.2: Mechanisms of Evolution 15.2: Section Check Chapter 15 Summary Chapter 15 Assessment Chapter Contents – page ix

10 You will analyze the theory of evolution.
What You’ll Learn You will analyze the theory of evolution. You will compare and contrast the processes of evolution. Chapter Intro-page 392

11 15.1 Section Objectives – page 393
Summarize Darwin’s theory of natural selection. Explain how the structural and physiological adaptations of organisms relate to natural selection. Distinguish among the types of evidence for evolution. 15.1 Section Objectives – page 393

12 Section 15.1 Summary – pages 393-403
Charles Darwin and Natural Selection The modern theory of evolution is the fundamental concept in biology. Recall that evolution is the change in populations over time. Section 15.1 Summary – pages

13 Section 15.1 Summary – pages 393-403
Fossils shape ideas about evolution When geologists provided evidence indicating that Earth was much older than many people had originally thought, biologists began to suspect that species change over time, or evolve. Many explanations about how species evolve have been proposed, but the ideas first published by Charles Darwin are the basis of modern evolutionary theory. Section 15.1 Summary – pages

14 Section 15.1 Summary – pages 393-403
Darwin on HMS Beagle It took Darwin years to develop his theory of evolution. He began in 1831 at age 22 when he took a job as a naturalist on the English ship HMS Beagle, which sailed around the world on a five-year scientific journey. Section 15.1 Summary – pages

15 Section 15.1 Summary – pages 393-403
Darwin on HMS Beagle Section 15.1 Summary – pages

16 Section 15.1 Summary – pages 393-403
Darwin on HMS Beagle As the ship’s naturalist, Darwin studied and collected biological and fossil specimens at every port along the route. His studies provided the foundation for his theory of evolution by natural selection. Section 15.1 Summary – pages

17 Section 15.1 Summary – pages 393-403
Darwin in the Galápagos On the Galápagos Islands, Darwin studied many species of animals and plants that are unique to the islands but similar to species elsewhere. These observations led Darwin to consider the possibility that species can change over time. Section 15.1 Summary – pages

18 Section 15.1 Summary – pages 393-403
Darwin continues his studies For the next two decades, Darwin worked to refine his explanation for how species change over time. English economist Thomas Malthus had proposed an idea that Darwin modified and used in his explanation. Malthus’s idea was that the human population grows faster than Earth’s food supply. Section 15.1 Summary – pages

19 Section 15.1 Summary – pages 393-403
Darwin continues his studies How did this help Darwin? He knew that many species produce large numbers of offspring. He also knew that such species had not overrun Earth. Section 15.1 Summary – pages

20 Section 15.1 Summary – pages 393-403
Darwin continues his studies He realized that individuals struggle to compete in changing environmental conditions. Only some individuals survive the competition and produce offspring. Section 15.1 Summary – pages

21 Section 15.1 Summary – pages 393-403
Darwin continues his studies Darwin observed that the traits of individuals vary in populations. Variations are then inherited. Breeding organisms with specific traits in order to produce offspring with identical traits is called artificial selection. Darwin hypothesized that there was a force in nature that worked like artificial selection. Section 15.1 Summary – pages

22 Section 15.1 Summary – pages 393-403
Darwin explains natural selection Natural selection is a mechanism for change in populations. It occurs when organisms with favorable variations survive, reproduce, and pass their variations to the next generation. Organisms without these variations are less likely to survive and reproduce. Section 15.1 Summary – pages

23 Section 15.1 Summary – pages 393-403
Darwin explains natural selection As a result, each generation consists largely of offspring from parents with these variations that aid survival. Alfred Russell Wallace, another British naturalist, reached a similar conclusion. Section 15.1 Summary – pages

24 Section 15.1 Summary – pages 393-403
Darwin explains natural selection Darwin proposed the idea of natural selection to explain how species change over time. In nature, organisms produce more offspring than can survive. Section 15.1 Summary – pages

25 Section 15.1 Summary – pages 393-403
Darwin explains natural selection In any population, individuals have variations. Fishes, for example, may differ in color, size, and speed. Section 15.1 Summary – pages

26 Section 15.1 Summary – pages 393-403
Darwin explains natural selection Individuals with certain useful variations, such as speed, survive in their environment, passing those variations to the next generation. Section 15.1 Summary – pages

27 Section 15.1 Summary – pages 393-403
Darwin explains natural selection Over time, offspring with certain variations make up most of the population and may look entirely different from their ancestors. Section 15.1 Summary – pages

28 Section 15.1 Summary – pages 393-403
Interpreting evidence after Darwin Volumes of scientific data have been gathered as evidence for evolution since Darwin’s time. Much of this evidence is subject to interpretation by different scientists. One of the issues is that evolutionary processes are difficult for humans to observe directly. Section 15.1 Summary – pages

29 Section 15.1 Summary – pages 393-403
Interpreting evidence after Darwin The short scale of human life spans makes it difficult to comprehend evolutionary processes that occur over millions of years. Almost all of today’s biologists accept the theory of evolution by natural selection. Section 15.1 Summary – pages

30 Section 15.1 Summary – pages 393-403
Adaptations: Evidence for Evolution Recall that an adaptation is any variation that aids an organism’s chances of survival in its environment. Darwin’s theory of evolution explains how adaptations may develop in species. Section 15.1 Summary – pages

31 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time According to Darwin’s theory, adaptations in species develop over many generations. Learning about adaptations in mole-rats can help you understand how natural selection has affected them. Section 15.1 Summary – pages

32 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time The ancestors of today’s common mole-rats probably resembled African rock rats. Section 15.1 Summary – pages

33 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time Some ancestral rats may have avoided predators better than others because of variations such as the size of teeth and claws. Section 15.1 Summary – pages

34 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time Ancestral rats that survived passed their variations to offspring. After many generations, most of the population’s individuals would have these adaptations. Section 15.1 Summary – pages

35 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time Over time, natural selection produced modern mole-rats. Their blindness may have evolved because vision had no survival advantage for them. Section 15.1 Summary – pages

36 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time Some other structural adaptations are subtle. Mimicry is a structural adaptation that enables one species to resemble another species. Section 15.1 Summary – pages

37 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time In one form of mimicry, a harmless species has adaptations that result in a physical resemblance to a harmful species. Predators that avoid the harmful looking species also avoid the similar-looking harmless species. Section 15.1 Summary – pages

38 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time In another form of mimicry, two or more harmful species resemble each other. For example, yellow jacket hornets, honeybees, and many other species of wasps all have harmful stings and similar coloration and behavior. Section 15.1 Summary – pages

39 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time Predators may learn quickly to avoid any organism with their general appearance. Section 15.1 Summary – pages

40 Section 15.1 Summary – pages 393-403
Structural adaptations arise over time Another subtle adaptation is camouflage, an adaptation that enables species to blend with their surroundings. Because well-camouflaged organisms are not easily found by predators, they survive to reproduce. Section 15.1 Summary – pages

41 Section 15.1 Summary – pages 393-403
Physiological adaptations can develop rapidly In general, most structural adaptations develop over millions of years. However, there are some adaptations that evolve much more rapidly. For example, do you know that some of the medicines developed during the twentieth century to fight bacterial diseases are no longer effective? Section 15.1 Summary – pages

42 Section 15.1 Summary – pages 393-403
Physiological adaptations can develop rapidly Non-resistant bacterium Antibiotic Resistant bacterium The bacteria in a population vary in their ability to resist antibiotics. When the population is exposed to an antibiotic, only the resistant bacteria survive. The resistant bacteria live and produce more resistant bacteria. Section 15.1 Summary – pages

43 Section 15.1 Summary – pages 393-403
Physiological adaptations can develop rapidly Non-resistant bacterium Antibiotic Resistant bacterium Today, penicillin no longer affects as many species of bacteria because some species have evolved physiological adaptations to prevent being killed by penicillin. Section 15.1 Summary – pages

44 Section 15.1 Summary – pages 393-403
Physiological adaptations can develop rapidly Physiological adaptations are changes in an organism’s metabolic processes. In addition to species of bacteria, scientists have observed these adaptations in species of insects and weeds that are pests. Section 15.1 Summary – pages

45 Section 15.1 Summary – pages 393-403
Other Evidence for Evolution Physiological resistance in species of bacteria, insects, and plants is direct evidence of evolution. However, most of the evidence for evolution is indirect, coming from sources such as fossils and studies of anatomy, embryology, and biochemistry. Section 15.1 Summary – pages

46 Section 15.1 Summary – pages 393-403
Fossils Fossils are an important source of evolutionary evidence because they provide a record of early life and evolutionary history. Section 15.1 Summary – pages

47 Section 15.1 Summary – pages 393-403
Fossils Although the fossil record provides evidence that evolution occurred, the record is incomplete. Although paleontologists do not have fossils for all the changes that have occurred, they can still understand the overall picture of how most groups evolved. Section 15.1 Summary – pages

48 Section 15.1 Summary – pages 393-403
Fossils Fossils are found throughout the world. As the fossil record becomes more complete, the sequences of evolution become clearer. For example, you can see how paleontologists have charted the evolutionary path that led to today’s camel after piecing together fossil skulls, teeth, and limb bones. Section 15.1 Summary – pages

49 Section 15.1 Summary – pages 393-403
Fossils Camel Evolution Paleocene 65 million years ago Eocene 54 million years ago Oligocene 33 million years ago Miocene 23 million years ago Age Present Organism Skull and teeth Limb bones Section 15.1 Summary – pages

50 Section 15.1 Summary – pages 393-403
Anatomy Structural features with a common evolutionary origin are called homologous structures. Homologous structures can be similar in arrangement, in function, or in both. Crocodile forelimb Whale forelimb Bird wing Section 15.1 Summary – pages

51 Section 15.1 Summary – pages 393-403
Anatomy The body parts of organisms that do not have a common evolutionary origin but are similar in function are called analogous structures. Although analogous structures don’t shed light on evolutionary relationships, they do provide evidence of evolution. Section 15.1 Summary – pages

52 Section 15.1 Summary – pages 393-403
Anatomy For example, insect and bird wings probably evolved separately when their different ancestors adapted independently to similar ways of life. Section 15.1 Summary – pages

53 Section 15.1 Summary – pages 393-403
Anatomy Another type of body feature that suggests an evolutionary relationship is a vestigial structure—a body structure in a present-day organism that no longer serves its original purpose, but was probably useful to an ancestor. A structure becomes vestigial when the species no longer needs the feature for its original function, yet it is still inherited as part of the body plan for the species. Section 15.1 Summary – pages

54 Section 15.1 Summary – pages 393-403
Anatomy Many organisms have vestigial structures. Vestigial structures, such as pelvic bones in the baleen whale, are evidence of evolution because they show structural change over time. Section 15.1 Summary – pages

55 Section 15.1 Summary – pages 393-403
Embryology An embryo is the earliest stage of growth and development of both plants and animals. The embryos of a fish, a reptile, a bird, and a mammal have a tail and pharyngeal pouches. Pharyngeal pouches Pharyngeal pouches Tail Tail Fish Reptile Bird Mammal Section 15.1 Summary – pages

56 Section 15.1 Summary – pages 393-403
Embryology It is the shared features in the young embryos that suggest evolution from a distant, common ancestor. Pharyngeal pouches Pharyngeal pouches Tail Tail Fish Reptile Bird Mammal Section 15.1 Summary – pages

57 Section 15.1 Summary – pages 393-403
Biochemistry Biochemistry also provides strong evidence for evolution. Nearly all organisms share DNA, ATP, and many enzymes among their biochemical molecules. Section 15.1 Summary – pages

58 Section 15.1 Summary – pages 393-403
Biochemistry One enzyme, cytochrome c, occurs in organisms as diverse as bacteria and bison. Biologists compared the differences that exist among species in the amino acid sequence of cytochrome c. Section 15.1 Summary – pages

59 Section 15.1 Summary – pages 393-403
Biochemistry The data show the number of amino acid substitutions in the amino acid sequences for the different organisms. Biochemical Similarities of Organisms Percent Substitutions of Amino Acids in Cytochrome c Residues Comparison of Organisms Two orders of mammals 5 and 10 Birds vs. mammals 8-12 Amphibians vs. birds 14-18 Fish vs. land vertebrates 18-22 Insects vs. vertebrates 27-34 Algae vs. animals 57 Section 15.1 Summary – pages

60 Section 15.1 Summary – pages 393-403
Biochemistry Organisms that are biochemically similar have fewer differences in their amino acid sequences. Biochemical Similarities of Organisms Percent Substitutions of Amino Acids in Cytochrome c Residues Comparison of Organisms Two orders of mammals 5 and 10 Birds vs. mammals 8-12 Amphibians vs. birds 14-18 Fish vs. land vertebrates 18-22 Insects vs. vertebrates 27-34 Algae vs. animals 57 Section 15.1 Summary – pages

61 Section 15.1 Summary – pages 393-403
Biochemistry Since Darwin’s time, scientists have constructed evolutionary diagrams that show levels of relationships among species. In the 1970s, some biologists began to use RNA and DNA nucleotide sequences to construct evolutionary diagrams. Section 15.1 Summary – pages

62 Section 15.1 Summary – pages 393-403
Biochemistry Today, scientists combine data from fossils, comparative anatomy, embryology, and biochemistry in order to interpret the evolutionary relationships among species. Section 15.1 Summary – pages

63 Question 1 _______ is considered to be the fundamental concept of biology. A. genetics B. the modern theory of evolution C. artificial selection D. structural adaptation The answer is B. Section 1 Check

64 Question 2 Breeding organisms with specific traits in order to produce offspring with identical traits is called _______. A. natural selection B. adaptation C. mutation D. artificial selection The answer is D. Section 1 Check

65 Question 3 What is the difference between artificial selection and natural selection? Answer Artificial selection is the intentional breeding of organisms with specific traits in order to produce offspring with identical traits. Natural selection occurs when organisms with favorable variations of traits survive in nature, reproduce, and pass these favorable variations to offspring. Section 1 Check

66 Question 4 Mimicry and camouflage are NOT examples of _________.
A. adaptation B. natural selection C. evolution D. artificial selection The answer is D. Section 1 Check

67 Question 5 Answer How does mimicry differ from camouflage?
Mimicry is an adaptation that allows one species to resemble another species. Camouflage is an adaptation that allows one species to resemble its surroundings. Section 1 Check

68 15.2 Section Objectives – page 404
Summarize the effects of the different types of natural selections on gene pools. Relate changes in genetic equilibrium to mechanisms of speciation. Explain the role of natural selection in convergent and divergent evolution. 15.2 Section Objectives – page 404

69 Section 15.2 Summary– pages 404-413
Population Genetics and Evolution Since Darwin’s time, scientists have learned a great deal about genes and modified Darwin’s ideas accordingly. The principles of today’s modern theory of evolution are rooted in population genetics and other related fields of study and are expressed in genetic terms. Section 15.2 Summary– pages

70 Section 15.2 Summary– pages 404-413
Populations, not individuals, evolve Genes determine most of an individual’s features, such as tooth shape or flower color. If an organism has a feature—called a phenotype in genetic terms—that is poorly adapted to its environment, the organism may be unable to survive and reproduce. However, within its lifetime, it cannot evolve a new phenotype by natural selection in response to its environment. Section 15.2 Summary– pages

71 Section 15.2 Summary– pages 404-413
Populations, not individuals, evolve Natural selection acts on the range of phenotypes in a population. Each member has the genes that characterize the traits of the species, and these genes exist as pairs of alleles. Evolution occurs as a population’s genes and their frequencies change over time. Section 15.2 Summary– pages

72 Section 15.2 Summary– pages 404-413
Populations, not individuals, evolve How can a population’s genes change over time? Picture all of the alleles of the population’s genes as being together in a large pool called a gene pool. The percentage of any specific allele in the gene pool is called the allelic frequency. Section 15.2 Summary– pages

73 Section 15.2 Summary– pages 404-413
Populations, not individuals, evolve They refer to a population in which the frequency of alleles remains the same over generations as being in genetic equilibrium. Section 15.2 Summary– pages

74 Section 15.2 Summary– pages 404-413
Populations, not individuals, evolve Look at the population of snapdragons. First generation Phenotype frequency Allele frequency White = 0 R’ = 0.75 Pink = 0.5 R = 0.25 Red = 0.5 RR RR RR¢ RR¢ RR RR¢ RR RR¢ Second generation Phenotype frequency Allele frequency White = 0.125 R = 0.75 Pink = 0.25 R’ = 0.25 Red = 0.625 RR RR¢ RR RR¢ RR R¢ R¢ RR RR Section 15.2 Summary– pages

75 Section 15.2 Summary– pages 404-413
Populations, not individuals, evolve A pattern of heredity called incomplete dominance governs flower color in snapdragons. The population of snapdragons is in genetic equilibrium when the frequency of its alleles for flower color is the same in all its generations. Section 15.2 Summary– pages

76 Section 15.2 Summary– pages 404-413
Changes in genetic equilibrium A population that is in genetic equilibrium is not evolving. Any factor that affects the genes in the gene pool can change allelic frequencies, disrupting a population’s genetic equilibrium, which results in the process of evolution. Section 15.2 Summary– pages

77 Section 15.2 Summary– pages 404-413
Changes in genetic equilibrium One mechanism for genetic change is mutation. Environmental factors, such as radiation or chemicals, cause many mutations, but other mutations occur by chance. Section 15.2 Summary– pages

78 Section 15.2 Summary– pages 404-413
Changes in genetic equilibrium Many are lethal. However, occasionally, a mutation results in a useful variation, and the new gene becomes part of the population’s gene pool by the process of natural selection. Section 15.2 Summary– pages

79 Section 15.2 Summary– pages 404-413
Changes in genetic equilibrium Another mechanism that disrupts a population’s genetic equilibrium is genetic drift—the alteration of allelic frequencies by chance events. Genetic drift can greatly affect small populations that include the descendants of a small number of organisms. Section 15.2 Summary– pages

80 Section 15.2 Summary– pages 404-413
Changes in genetic equilibrium Genetic drift has been observed in some small human populations that have become isolated due to reasons such as religious practices and belief systems. Genetic equilibrium is also disrupted by the movement of individuals in and out of a population. Section 15.2 Summary– pages

81 Section 15.2 Summary– pages 404-413
Changes in genetic equilibrium The transport of genes by migrating individuals is called gene flow. When an individual leaves a population, its genes are lost from the gene pool. When individuals enter a population, their genes are added to the pool. Section 15.2 Summary– pages

82 Section 15.2 Summary– pages 404-413
Natural selection acts on variations Some variations increase or decrease an organism’s chance of survival in an environment. There are three different types of natural selection that act on variation: stabilizing, directional, and disruptive. Section 15.2 Summary– pages

83 Section 15.2 Summary– pages 404-413
Natural selection acts on variations Stabilizing selection is a natural selection that favors average individuals in a population. Selection for average size spiders Normal variation Section 15.2 Summary– pages

84 Section 15.2 Summary– pages 404-413
Natural selection acts on variations Directional selection occurs when natural selection favors one of the extreme variations of a trait. Selection for longer beaks Normal variation Section 15.2 Summary– pages

85 Section 15.2 Summary– pages 404-413
Natural selection acts on variations In disruptive selection, individuals with either extreme of a trait’s variation are selected for. Selection for light limpets Normal variation Selection for dark limpets Section 15.2 Summary– pages

86 Section 15.2 Summary– pages 404-413
Natural selection acts on variations Natural selection can significantly alter the genetic equilibrium of a population’s gene pool over time. Significant changes in the gene pool could lead to the evolution of a new species over time. Section 15.2 Summary– pages

87 Section 15.2 Summary– pages 404-413
The Evolution of Species Recall that a species is defined as a group of organisms that look alike and can interbreed to produce fertile offspring in nature. The evolution of new species, a process called speciation (spee shee AY shun), occurs when members of similar populations no longer interbreed to produce fertile offspring within their natural environment. Section 15.2 Summary– pages

88 Section 15.2 Summary– pages 404-413
Physical barriers can prevent interbreeding In nature, physical barriers can break large populations into smaller ones. Geographic isolation occurs whenever a physical barrier divides a population. A new species can evolve when a population has been geographically isolated. Section 15.2 Summary– pages

89 Section 15.2 Summary– pages 404-413
The Evolution of Species When geographic isolation divides a population of tree frogs, the individuals no longer mate across populations. Tree frogs are a single population. Section 15.2 Summary– pages

90 Section 15.2 Summary– pages 404-413
The Evolution of Species The formation of a river may divide the frogs into two populations. Section 15.2 Summary– pages

91 Section 15.2 Summary– pages 404-413
The Evolution of Species Over time, the divided populations may become two species that may no longer interbreed, even if reunited. Section 15.2 Summary– pages

92 Section 15.2 Summary– pages 404-413
Reproductive isolation can result in speciation As populations become increasingly distinct, reproductive isolation can arise. Reproductive isolation occurs when formerly interbreeding organisms can no longer mate and produce fertile offspring. Section 15.2 Summary– pages

93 Section 15.2 Summary– pages 404-413
Reproductive isolation can result in speciation There are different types of reproductive isolation. One type occurs when the genetic material of the populations becomes so different that fertilization cannot occur. Another type of reproductive isolation is behavioral. Section 15.2 Summary– pages

94 Section 15.2 Summary– pages 404-413
A change in chromosome numbers and speciation Chromosomes can also play a role in speciation. Many new species of plants and some species of animals have evolved in the same geographic area as a result of polyploidy. Any individual or species with a multiple of the normal set of chromosomes is known as a polyploid. Section 15.2 Summary– pages

95 Section 15.2 Summary– pages 404-413
A change in chromosome numbers and speciation Mistakes during mitosis or meiosis can result in polyploid individuals. New polyploid species Abnormal gametes (2n) Fertilization Zygote (4n) Nondisjunction Sterile plant Fertilization Parent plant (2n) Meiosis begins Normal meiosis Normal gametes (n) Zygote (3n) Section 15.2 Summary– pages

96 Section 15.2 Summary– pages 404-413
A change in chromosome numbers and speciation Polyploidy may result in immediate reproductive isolation. When a polyploid mates with an individual of the normal species, the resulting zygotes may not develop normally because of the difference in chromosome numbers. Section 15.2 Summary– pages

97 Section 15.2 Summary– pages 404-413
A change in chromosome numbers and speciation However, polyploids within a population may interbreed and form a separate species. Polyploids can arise from within a species or from hybridization between species. Many flowering plant species and many important crop plants, such as wheat, cotton, and apples, originated by polyploidy. Section 15.2 Summary– pages

98 Section 15.2 Summary– pages 404-413
Speciation rates Scientists once argued that evolution occurs at a slow, steady rate, with small, adaptive changes gradually accumulating over time in populations. Gradualism is the idea that species originate through a gradual change of adaptations. Some evidence from the fossil record supports gradualism. Section 15.2 Summary– pages

99 Section 15.2 Summary– pages 404-413
Speciation rates In 1972, Niles Eldredge and Stephen J. Gould proposed a different hypothesis known as punctuated equilibrium. This hypothesis argues that speciation occurs relatively quickly, in rapid bursts, with long periods of genetic equilibrium in between. Section 15.2 Summary– pages

100 Section 15.2 Summary– pages 404-413
Speciation rates Loxodonta africana Elephas maximus 1 2 Millions of Years Ago Mammuthus primigenius Elephas 3 Loxodonta 4 Mammuthus 5 Primelephas 6 Ancestral species about 55 million years ago Section 15.2 Summary– pages

101 Section 15.2 Summary– pages 404-413
Speciation rates According to this hypothesis, environmental changes, such as higher temperatures or the introduction of a competitive species, lead to rapid changes in a small population’s gene pool that is reproductively isolated from the main population. Speciation happens quickly—in about 10,000 years or less. Section 15.2 Summary– pages

102 Section 15.2 Summary– pages 404-413
Speciation rates Biologists generally agree that both gradualism and punctuated equilibrium can result in speciation, depending on the circumstances. Section 15.2 Summary– pages

103 Section 15.2 Summary– pages 404-413
Patterns of Evolution Biologists have observed different patterns of evolution that occur throughout the world in different natural environments. These patterns support the idea that natural selection is an important agent for evolution. Section 15.2 Summary– pages

104 Section 15.2 Summary– pages 404-413
Diversity in new environments When an ancestral species evolves into an array of species to fit a number of diverse habitats, the result is called adaptive radiation. Section 15.2 Summary– pages

105 Section 15.2 Summary– pages 404-413
Diversity in new environments Adaptive radiation in both plants and animals has occurred and continues to occur throughout the world and is common on islands. Adaptive radiation is a type of divergent evolution, the pattern of evolution in which species that were once similar to an ancestral species diverge, or become increasingly distinct. Section 15.2 Summary– pages

106 Section 15.2 Summary– pages 404-413
Diversity in new environments Amakihi Extinct mamo Crested honeycreeper Possible Ancestral Lasan finch Kauai Niihau Molokai Oahu Maui Lanai Akialoa Kahoolawe Akepa Hawaii Apapane Maui parrotbill Akiapolaau Liwi Grosbeak finch Akikiki Palila Ou Section 15.2 Summary– pages

107 Section 15.2 Summary– pages 404-413
Diversity in new environments Divergent evolution occurs when populations change as they adapt to different environmental conditions, eventually resulting in new species. Section 15.2 Summary– pages

108 Section 15.2 Summary– pages 404-413
Different species can look alike A pattern of evolution in which distantly related organisms evolve similar traits is called convergent evolution. Convergent evolution occurs when unrelated species occupy similar environments in different parts of the world. Section 15.2 Summary– pages

109 Question 1 The fur of an Arctic fox turns white in the winter. Is this an example of natural selection? Why or why not? Section 2 Check

110 The answer is no. An individual cannot evolve a new phenotype (in this case, changing the color of its fur) within its lifetime in response to its environment. Section 2 Check

111 Question 2 Which type of natural selection does NOT favor the evolution of new species? A. divergent B. disruptive C. stabilizing D. directional Section 2 Check

112 The answer is C. Stabilizing selection reduces variation in a population.
Section 2 Check

113 Question 3 Which of the following rarely affects a population’s genetic equilibrium? A. genetic drift B. lethal mutations C. gene flow D. disruptive selection Section 2 Check

114 The answer is B. Organisms with lethal mutations do not survive
The answer is B. Organisms with lethal mutations do not survive. Therefore, organisms with lethal mutations cannot produce enough offspring to affect a population’s genetic equilibrium. Section 2 Check

115 Question 4 Why are the Galapagos Islands rich in unique species of organisms? A. The islands are an area exhibiting an abnormal number of mutations. B. The islands are geographically isolated. C. The island species have been subjected to increased gene flow. D. The island species have been subjected to stabilizing selection. Section 2 Check

116 The answer is B. Geographic isolation has helped to keep the islands’ species unique.
Section 2 Check

117 Natural Selection and the Evidence for Evolution
After many years of experimentation and observation, Charles Darwin proposed the idea that species originated through the process of natural selection. Natural selection is a mechanism of change in populations. In a specific environment, individuals with certain variations are likely to survive, reproduce, and pass these variations to future generations. Chapter Summary – 15.1

118 Natural Selection and the Evidence for Evolution
Evolution has been observed in the lab and field, but much of the evidence for evolution has come from studies of fossils, anatomy, and biochemistry. Chapter Summary – 15.1

119 Mechanisms of Evolution
Evolution can occur only when a population’s genetic equilibrium changes. Mutation, genetic drift, and gene flow can change a population’s genetic equilibrium, especially in a small, isolated population. Natural selection is usually a factor that causes change in established gene pools—both large and small. Chapter Summary – 15.2

120 Mechanisms of Evolution
The separation of populations by physical barriers can lead to speciation. There are many patterns of evolution in nature. These patterns support the idea that natural selection is an important mechanism of evolution. Chapter Summary – 15.2

121 Mechanisms of Evolution
Gradualism is the hypothesis that species originate through a gradual change in adaptations. The alternative hypothesis, punctuated equilibrium, argues that speciation occurs in relatively rapid bursts, followed by long periods of genetic equilibrium. Evidence for both evolutionary rates can be found in the fossil record. Chapter Summary – 15.2

122 Question 1 Answer Why does disruptive selection favor speciation?
Disruptive selection favors extreme variations of a trait. Over time, it is less likely that species with extreme variations will mate, therefore giving rise to new species. Chapter Assessment

123 Question 2 Are the physical similarities between a dolphin and a shark evidence of convergent or divergent evolution? Chapter Assessment

124 The answer is convergent evolution
The answer is convergent evolution. Dolphins and sharks are unrelated organisms that have evolved similar traits because they share similar environmental pressures. Chapter Assessment

125 Question 3 Niles Eldredge and Stephen J. Gould proposed _______.
A. gradualism B. reproductive isolation C. punctuated equilibrium D. directional selection The answer is C. Chapter Assessment

126 Question 4 Which of the following pairs of terms is NOT related?
A. gradualism – speciation B. natural selection – disruptive selection C. gene pool – allelic frequency D. polyploid – gene flow The answer is D. Chapter Assessment

127 Question 5 Why do some insects and bacteria evolve adaptations more rapidly than other species? Chapter Assessment

128 Insects and bacteria are examples of species that reproduce in large numbers and many times in a relatively short span of time, allowing adaptations to be more easily observed. Chapter Assessment

129 Question 6 Why is most of the evidence for evolution indirect rather than direct evidence? Answer Evolutionary processes are difficult for humans to observe directly. The short scale of human life spans makes it difficult to comprehend evolutionary processes that occur over millions of years. Chapter Assessment

130 Question 7 Are the fangs of a rattlesnake and the fangs of a spider homologous structures or analogous structures, and why? Chapter Assessment

131 The fangs of these organisms are analogous structures
The fangs of these organisms are analogous structures. They share the same function in each organism, to deliver venom, but the organisms do not share a common evolutionary origin. Chapter Assessment

132 Question 8 How do bird bones show an adaptation to flying that the bones of the flightless organisms, though homologous, do not? Chapter Assessment

133 Bird bones have evolved to be delicate, lightweight, and elongated.
Chapter Assessment

134 Question 9 How do analogous structures provide evidence of evolution? Answer Analogous structures show the way dissimilar organisms adapted independently to similar ways of life by developing functionally similar structures. Chapter Assessment

135 Question 10 Why is the presence of pelvic bones in the baleen whale considered to be evidence of evolution? Chapter Assessment

136 Pelvic bones are evidence that whales once possessed hind limbs
Pelvic bones are evidence that whales once possessed hind limbs. Since whales now have no hind limbs, their loss must be the result of an evolutionary change. Chapter Assessment

137 To advance to the next item or next page click on any of the following keys: mouse, space bar, enter, down or forward arrow. Click on this icon to return to the table of contents Click on this icon to return to the previous slide Click on this icon to move to the next slide Click on this icon to open the resources file.

138 End of Chapter 15 Show


Download ppt "Table of Contents – pages iii"

Similar presentations


Ads by Google