Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex Numbers 2 www.mathxtc.com.

Similar presentations


Presentation on theme: "Complex Numbers 2 www.mathxtc.com."— Presentation transcript:

1 Complex Numbers 2

2 Complex Numbers

3 Complex Numbers What is truth?

4 Complex Numbers Who uses them in real life?

5 Complex Numbers Who uses them in real life? Here’s a hint….

6 Complex Numbers Who uses them in real life? Here’s a hint….

7 Complex Numbers Who uses them in real life?
The navigation system in the space shuttle depends on complex numbers!

8 Can you see a problem here?
-2 Can you see a problem here?

9 -2 Who goes first?

10 Complex numbers do not have order
-2 Complex numbers do not have order

11 What is a complex number?
It is a tool to solve an equation.

12 What is a complex number?
It is a tool to solve an equation. It has been used to solve equations for the last 200 years or so.

13 What is a complex number?
It is a tool to solve an equation. It has been used to solve equations for the last 200 years or so. It is defined to be i such that ;

14 What is a complex number?
It is a tool to solve an equation. It has been used to solve equations for the last 200 years or so. It is defined to be i such that ; Or in other words;

15 Complex i is an imaginary number

16 Complex i is an imaginary number Or a complex number

17 Complex i is an imaginary number Or a complex number
Or an unreal number

18 Complex? i is an imaginary number Or a complex number
Or an unreal number The terms are inter-changeable unreal complex imaginary

19 Some observations In the beginning there were counting numbers 1 2

20 Some observations In the beginning there were counting numbers
And then we needed integers 1 2

21 Some observations In the beginning there were counting numbers
And then we needed integers 1 2 -1 -3

22 Some observations In the beginning there were counting numbers
And then we needed integers And rationals 1 0.41 2 -1 -3

23 Some observations In the beginning there were counting numbers
And then we needed integers And rationals And irrationals 1 0.41 2 -1 -3

24 Some observations In the beginning there were counting numbers
And then we needed integers And rationals And irrationals And reals 1 0.41 2 -1 -3

25 So where do unreals fit in ?
We have always used them. 6 is not just 6 it is 6 + 0i. Complex numbers incorporate all numbers. 3 + 4i 2i 1 0.41 2 -1 -3

26 A number such as 3i is a purely imaginary number

27 A number such as 3i is a purely imaginary number
A number such as 6 is a purely real number

28 A number such as 3i is a purely imaginary number
A number such as 6 is a purely real number 6 + 3i is a complex number

29 A number such as 3i is a purely imaginary number
A number such as 6 is a purely real number 6 + 3i is a complex number x + iy is the general form of a complex number

30 A number such as 3i is a purely imaginary number
A number such as 6 is a purely real number 6 + 3i is a complex number x + iy is the general form of a complex number If x + iy = 6 – 4i then x = 6 and y = -4

31 A number such as 3i is a purely imaginary number
A number such as 6 is a purely real number 6 + 3i is a complex number x + iy is the general form of a complex number If x + iy = 6 – 4i then x = 6 and y = – 4 The ‘real part’ of 6 – 4i is 6

32 Worked Examples Simplify

33 Worked Examples Simplify

34 Worked Examples Simplify Evaluate

35 Worked Examples Simplify Evaluate

36 Worked Examples 3. Simplify

37 Worked Examples 3. Simplify

38 Worked Examples 3. Simplify 4. Simplify

39 Worked Examples 3. Simplify 4. Simplify

40 Worked Examples 3. Simplify 4. Simplify 5. Simplify

41 Addition Subtraction Multiplication
3. Simplify 4. Simplify 5. Simplify

42 Division 6. Simplify

43 Division 6. Simplify The trick is to make the denominator real:

44 Division 6. Simplify The trick is to make the denominator real:

45 Solving Quadratic Functions

46 Powers of i

47 Powers of i

48 Powers of i

49 Powers of i

50 Powers of i

51 Developing useful rules

52 Developing useful rules

53 Developing useful rules

54 Developing useful rules

55 Argand Diagrams Jean Robert Argand was a Swiss amateur mathematician. He was an accountant book-keeper.

56 Argand Diagrams Jean Robert Argand was a Swiss amateur mathematician. He was an accountant book-keeper. He is remembered for 2 things His ‘Argand Diagram’

57 Argand Diagrams Jean Robert Argand was a Swiss amateur mathematician. He was an accountant book-keeper. He is remembered for 2 things His ‘Argand Diagram’ His work on the ‘bell curve’

58 Argand Diagrams Jean Robert Argand was a Swiss amateur mathematician. He was an accountant book-keeper. He is remembered for 2 things His ‘Argand Diagram’ His work on the ‘bell curve’ Very little is known about Argand. No likeness has survived.

59 Argand Diagrams x y 1 2 3 2 + 3i

60 Argand Diagrams x y 1 2 3 2 + 3i We can represent complex numbers as a point.

61 Argand Diagrams x y 1 2 3

62 Argand Diagrams y x We can represent complex numbers as a vector. 1 2
3 A O We can represent complex numbers as a vector.

63 Argand Diagrams x y 1 2 3 B A O

64 Argand Diagrams C x y 1 2 3 B A O

65 Argand Diagrams C x y 1 2 3 B A O

66 Argand Diagrams C x y 1 2 3 B A O

67 Argand Diagrams C x y 1 2 3 B A O

68 Argand Diagrams C x y 1 2 3 B A O

69 Argand Diagrams C x y 1 2 3 B A O

70 Argand Diagrams C x y 1 2 3 B A O

71 De Moivre Abraham De Moivre was a French Protestant who moved to England in search of religious freedom. He was most famous for his work on probability and was an acquaintance of Isaac Newton. His theorem was possibly suggested to him by Newton.

72 This remarkable formula works for all values of n.
De Moivre’s Theorem This remarkable formula works for all values of n.

73 Enter Leonhard Euler…..

74 Euler who was the first to use i for complex numbers had several great ideas. One of them was that
eiq = cos q + i sin q Here is an amazing proof….

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94 One last amazing result
Have you ever thought about ii ?

95 One last amazing result
What if I told you that ii is a real number?

96

97

98

99 ii =

100 ii =

101 So ii is an infinite number of real numbers

102 The End


Download ppt "Complex Numbers 2 www.mathxtc.com."

Similar presentations


Ads by Google